scholarly journals Synergetic nature of oil and gas reservoir behavior and its influence on the efficiency of opening and increase well productivity

Author(s):  
Yu. I. Voitenko

The article continues the author’s series of works on the application of synergetic theory to understand and describe the processes and phenomena that accompany the search and development of mineral resources. The research results show that the synergetic theory is universal and allows to understand and describe a wide range of phenomena and processes that occur in geological exploration and mining: dynamic phenomena in mines (outbursts of rocks and coal), spontaneous сombustion of сoal in coal mines, emergency outbursts of oil and gas from exploration wells, destruction of high-pressure pipelines, geodynamic phenomena in quaternary deposits, sedimentary rocks, and in the geological structures of the crystalline basement. One of the signs of processes and phenomena that have a synergistic nature is the nonlinear nature of the system’s response to weak perturbations. Minor disturbances slightly change the structure of geological material, in some cases change the mechanical and physical properties of formation fiuids. This creates the conditions for disturbing the unstable equilibrium of the system at the bifurcation points and its transition to another equilibrium state with other thermodynamic parameters that characterize the new state of the system. Such transitions are characterized by kinetic and phase transitions. In particular, in the reservoir rock, in coal, micro- and macrocrack systems are formed and developed. The shape of dissipative structures is described using fractal theory. The duration of self-organization of dissipative structures and the transition of the system to a new equilibrium state depends on the type of dissipative structures, the properties of the environment in which they are formed, and the speed of physicochemical processes. The article considers the behavior of the system “well – rock formation” as an open thermodynamic system. The internal energy of the formation is compared with the energy of external explosive action from the well. Specific examples show that the behavior of such a system is subject to the laws of synergetics and as a result of weak action on the formation from the well there are significant nonlinear effects of productivity growth due to the internal energy of the formation. This energy is generated by reservoir and rock pressures.

2021 ◽  
Vol 22 (2) ◽  
pp. 225-233
Author(s):  
Andrey A. Rasskazov ◽  
Evgeniy S. Gorbatov ◽  
Alexander E. Kotelnikov

The conditions of the formation of nonmetallic and ore minerals in limnogenic structures are considered. It has been established that lakes are natural enriches of a wide range of useful components - silicate, carbonate, water-soluble, ore, organomineral. The most significant minerals of modern lakes, in addition to water, are: sapropel, diatomite, lime and mineral salts. Deposits of sand, clay, oil shale, oil and gas, coal, phosphorites, zeolites, evaporites, bauxites, ferromanganese, copper ores, placer minerals, and some rare and dispersed elements are associated with limnogenic complexes of different ages. It is shown that a greater variety of minerals of ancient lacustrine complexes compared to modern ones is associated both with variations of lacustrine lithogenesis in the past and with post-sedimentation transformations of sedimentary matter. In particular, epigenetic enrichment of ancient lacustrine complexes with ore components is noted. It was revealed that hydrocarbons and diatomites of lacustrine genesis are of a higher quality compared to similar minerals of marine genesis. It is noted that evolutionary changes in the processes of accumulation of limnogenic minerals have affected to the greatest degree biogenic and chemogenic components. An example of this is the progressive accumulation of caustobiolites and the sulfate evolution of evaporites in lacustrine structures during the Phanerozoic. An analysis of the genetic characteristics of lacustrine minerals makes it possible to develop new exploratory traits of a number of sedimentary deposits.


1970 ◽  
Vol 24 (3) ◽  
pp. 479-502 ◽  
Author(s):  
R. L. Friedheim ◽  
J. B. Kadane

International arrangements for the uses of the ocean have been the subject of long debate within the United Nations since a speech made by Ambassador Arvid Pardo of Malta before the General Assembly in 1967. Issues in question include the method of delimiting the outer edge of the legal continental shelf; the spectrum of ocean arms control possibilities; proposals to create a declaration of principles governing the exploration for, and the exploitation of, seabed mineral resources with the promise that exploitation take place only if it “benefits mankind as a whole,” especially the developing states; and consideration of schemes to create international machinery to regulate, license, or own the resources of the seabed and subsoil. The discussions and debates began in the First (Political and Security) Committee of the 22nd General Assembly and proceeded through an ad hoc committee to the 23rd and 24th assembly plenary sessions. The creation of a permanent committee on the seabed as a part of the General Assembly's machinery attests to the importance members of the United Nations attribute to ocean problems. Having established the committee, they will be faced soon with the necessity of reaching decisions. The 24th General Assembly, for example, passed a resolution requesting the Secretary-General to ascertain members' attitudes on the convening of a new international conference to deal with a wide range of law of the sea problems.


2020 ◽  
pp. 42-45
Author(s):  
J.A. Kerimov ◽  

The implementation of plastic details in various constructions enables to reduce the prime cost and labor intensity of machine and device manufacturing, decrease the weight of design and improve their quality and reliability at the same time. The studies were carried out with the aim of labor productivity increase and substitution of colored and black metals with plastic masses. For this purpose, the details with certain characteristics were selected for further implementation of developed technological process in oil-gas industry. The paper investigates the impact of cylinder and compression mold temperature on the quality parameters (shrinkage and hardness) of plastic details in oil-field equipment. The accessible boundaries of quality indicators of the details operated in the equipment of exploration, drilling and exploitation of oil and gas industry are studied in a wide range of mode parameters. The mathematic dependences between quality parameters (shrinkage and hardness) of the details on casting temperature are specified.


2021 ◽  
Author(s):  
Nouf AlJabri ◽  
Nan Shi

Abstract Nanoemulsions (NEs) are kinetically stable emulsions with droplet size on the order of 100 nm. Many unique properties of NEs, such as stability and rheology, have attracted considerable attention in the oil industry. Here, we review applications and studies of NEs for major upstream operations, highlighting useful properties of NEs, synthesis to render these properties, and techniques to characterize them. We identify specific challenges associated with large-scale applications of NEs and directions for future studies. We first summarize useful and unique properties of NEs, mostly arising from the small droplet size. Then, we compare different methods to prepare NEs based on the magnitude of input energy, i.e., low-energy and high-energy methods. In addition, we review techniques to characterize properties of NEs, such as droplet size, volume fraction of the dispersed phase, and viscosity. Furthermore, we discuss specific applications of NEs in four areas of upstream operations, i.e., enhanced oil recovery, drilling/completion, flow assurance, and stimulation. Finally, we identify challenges to economically tailor NEs with desired properties for large-scale upstream applications and propose possible solutions to some of these challenges. NEs are kinetically stable due to their small droplet size (submicron to 100 nm). Within this size range, the rate of major destabilizing mechanisms, such as coalescence, flocculation, and Ostwald ripening, is considerably slowed down. In addition, small droplet size yields large surface-to-volume ratio, optical transparency, high diffusivity, and controllable rheology. Similar to applications in other fields (food industry, pharmaceuticals, cosmetics, etc.), the oil and gas industry can also benefit from these useful properties of NEs. Proposed functions of NEs include delivering chemicals, conditioning wellbore/reservoir conditions, and improve chemical compatibility. Therefore, we envision NEs as a versatile technology that can be applied in a variety of upstream operations. Upstream operations often target a wide range of physical and chemical conditions and are operated at different time scales. More importantly, these operations typically consume a large amount of materials. These facts not only suggest efforts to rationally engineer properties of NEs in upstream applications, but also manifest the importance to economically optimize such efforts for large-scale operations. We summarize studies and applications of NEs in upstream operations in the oil and gas industry. We review useful properties of NEs that benefit upstream applications as well as techniques to synthesize and characterize NEs. More importantly, we identify challenges and opportunities in engineering NEs for large-scale operations in different upstream applications. This work not only focuses on scientific aspects of synthesizing NEs with desired properties but also emphasizes engineering and economic consideration that is important in the oil industry.


2021 ◽  
Author(s):  
José Correia ◽  
Cátia Rodrigues ◽  
Ricardo Esteves ◽  
Ricardo Cesar Bezerra de Melo ◽  
José Gutiérrez ◽  
...  

Abstract Environmental and safety sensing is becoming of high importance in the oil and gas upstream industry. However, present solutions to feed theses sensors are expensive and dangerous and there is so far no technology able to generate electrical energy in the operational conditions of oil and gas extraction wells. In this paper it is presented, for the first time in a relevant environment, a pioneering energy harvesting technology based on nanomaterials that takes advantage of fluid movement in oil extraction wells. A device was tested to power monitoring systems with locally harvested energy in harsh conditions environment (pressures up to 50 bar and temperatures of 50ºC). Even though this technology is in an early development stage this work opens a wide range of possible applications in deep underwater environments and in Oil and Gas extraction wells where continuous flow conditions are present.


2021 ◽  
Author(s):  
Max Olsen ◽  
Ragni Hatlebakk ◽  
Chris Holcroft ◽  
Arne Stavland ◽  
Nils Harald Giske ◽  
...  

Abstract Scope Controlled dissolution glasses form a permanent consolidating mineral matrix inside formations with either permeable or impermeable properties. The unique solution has a low injection viscosity and can be easily injected into a wide range of formations. The application method is simple and does not require multiple fluids or pre- and post-flushing. This paper focuses on the benefits of controlled dissolution glasses and potential applications in the oil and gas industry. Methods, Procedures, Process Controlled dissolution glasses have been researched extensively by Glass Technology Services (GTS) since 1999 for the biomedical industry, nuclear waste storage industry, and defense and aerospace industries. GTS together with operators have been performing research and development for the oil industry over the last 10 years. The research investigated different glass compositions to determine their injectability and change in formation properties post-treatment. Sandstone, chalk, and shale formations were used in the testing. Flow testing using a Hoek cell and a core flood apparatus was used to determine the post-treatment permeability. For post-treatment strength measurement, Brazilian tensile strength tests and modified cone penetration tests were used to determine tensile strength and shear strength respectively. The testing evaluated different mixing fluids, such as water and different brines, compatibility, corrosion testing, and concentrations. Results, Observations, Conclusions The testing identified different glass compositions and concentrations that are suitable for different applications and formations. Certain glass compositions increase tensile strength significantly while also maintaining the permeability in the formation. Other glass compositions have similar tensile strength increase, but result in an impermeable seal. The liquid glass solutions react with the formation to form a mineral precipitation inside the formation. The reaction with the formation occurs quickly at downhole conditions, within hours of placement. The glass can be mixed with water and variety of brines to form a stable solution across a range of densities. The testing and results to date have laid the foundation for use in a variety of consolidation and P&A applications in oil and gas wells. Testing is ongoing for a chalk and sandstone consolidation solution and for a sealing solution. Novel/Additive Information These novel glass solutions can solve many of the production and instability challenges that plague weak formations. The glasses can be injected into very low permeability formation to either seal or consolidate.


2021 ◽  
pp. 932-950
Author(s):  
Vladislav Vyacheslavovich Emelyanov

Every few decades, the world order changes due to various geopolitical, economic and other circumstances. For example, as a result of globalization, the world order has undergone significant changes in the last forty years. Globalization has led to the destruction of the postwar world order, as well as to world leadership by the United States and the West. However, in recent decades, as a result of globalization, the U.S. and the West began to cede their leadership to developing countries, so there is now a change in the economic structure of relations in the world system. Today the center of economic growth is in the East, namely in Asia. There are no new superpowers in the world at the moment, but the unipolar world will cease to exist due to the weakening of the U. S. leadership, which will lead to a change in the world order. A new leader, which may replace the U. S., will not have as wide range of advantages as the USA has. Most likely, the essence of the new order will be to unite the largest countries and alliances into blocks, for example, the USA together with the Trans-Pacific Partnership, the EU, etc. The article outlines forecasts of GDP growth rates as well as the global energy outlook; analyzes the LNG market as well as the impact of the pandemic on the global oil and gas market; and lists the characteristics of U. S. geopolitics.


2018 ◽  
Vol 36 (5) ◽  
pp. 1136-1156 ◽  
Author(s):  
Yuanhua Qing ◽  
Zhengxiang Lü ◽  
Xiandong Wang ◽  
Xiuzhang Song ◽  
Shunli Zhang ◽  
...  

The oil and gas in the Palaeogene lacustrine carbonate rock reservoirs in the Bohai Sea accumulated during several periods. The reservoir porosity formed during each period affected the degree of accumulation that occurred. In this paper, the percentages of particles, authigenic minerals and pores in the reservoir bed were calculated with the statistical method of microstructure analysis. The formation time was determined with an isotopic analysis of the authigenic carbonate minerals and the homogenization temperature of the gas–liquid inclusions. The percentages of the primary intergranular pores that formed during the different stages were recovered based on the compaction features both before and after the formation of the major authigenic minerals. The evolution of porosity was thus described quantitatively and chronologically, employing the percentages of the residual primary intergranular pores, visceral cavity pores and dissolved pores at the different burial depths. The results indicate that in the initial sediments of the reservoir rock, the primary intergranular porosity was 32.4%. During the early burial stage, the total reservoir porosity increased by up to 46.9%, due to the addition of another type of primary pore, namely visceral cavity pores, which were generated from the decomposition of bioclasts. During the late, deep burial stage, the compaction reduced only 8.2% of the porosity, due to the support of the pore-lining dolomite precipitating during the early stage. Authigenic minerals occupied 12.6% of the porosity, and the dissolution created the secondary porosity by 3.8%. Good preservation of the visceral cavity pores and the growth of the pore-lining dolomites during the early stages are the major factors leading to the high reservoir porosity. The quantitative and chronological characteristics of the reservoir porosity evolution could be described accurately. The prediction of reservoir beds can be better guided than in previously reported methods by applying high resolution microscopic quantitative analysis technology and authigenic mineral timing analysis technology.


2009 ◽  
Vol 5 (H15) ◽  
pp. 468-469 ◽  
Author(s):  
Miguel A. de Avillez ◽  
Dieter Breitschwerdt

AbstractHigh-resolution non-ideal magnetohydrodynamical simulations of the turbulent magnetized ISM, powered by supernovae types Ia and II at Galactic rate, including self-gravity and non-equilibriuim ionization (NEI), taking into account the time evolution of the ionization structure of H, He, C, N, O, Ne, Mg, Si, S and Fe, were carried out. These runs cover a wide range (from kpc to sub-parsec) of scales, providing resolution independent information on the injection scale, extended self-similarity and the fractal dmension of the most dissipative structures.


Sign in / Sign up

Export Citation Format

Share Document