scholarly journals Preparation method of Silver Nano particles

2020 ◽  
Vol 3 (2) ◽  
pp. 1-8
Author(s):  
Muhanned A E Al-Saedy

The last few years have perceived the most important development in the field of metals nanoparticle. As they have emerged a highly demanding chemical, physical and biological properties, thereby they employed in the various chemical and pharmaceutical industry. Silver as a metal with exceptional properties, its nanoparticles have devoted significant efforts for their synthesis and utility evaluation. In this review, the most recent and important approaches for the synthesis of silver nanoparticles will be covered along with the use of Ag NPs in a various disciplines especially those that are related to human life such as medicine, drug delivery and water purification. Besides reviewing several different opinions about the risks resulting from the synthesis and use of this type of materials

2012 ◽  
Vol 622-623 ◽  
pp. 878-882
Author(s):  
Roohangiz Naderi ◽  
Sarah Jafari Rad ◽  
Aliakbar Saboor Yaraghi ◽  
Mehdi Farhoodi ◽  
Mina Nemati

The use of nanoparticles has spannded many divisions of biological fields including sensors, drug delivery and clinical diagnosis. These functions all based on the most important action in cells called Endocytosis. The study of endocytosis in higher order plants remained inactive for a long period of time. In this work we use Silver Nano Particles (S.N.Ps) as a endocytosic substances were incubated by isolated protoplast of petunia .Concurrently, with the study of internalization, their appear aggregation inter and intracellular were investigated by Transmissions Electron Microscopy (TEM). Results and observations showed that the S.N.Ps crossed the cell membrane and internalized in to the cells. It can be assumed that the particles with the organic functionality – PEG coated – were internalized by the petunia protoplasts.


MRS Advances ◽  
2020 ◽  
Vol 5 (18-19) ◽  
pp. 975-984
Author(s):  
David Medina Suárez ◽  
Jousen A. Merced Colón ◽  
Waldemar García-Mercado ◽  
Dalice Piñero-Cruz ◽  
Sonia J. Bailón-Ruiz

ABSTRACTIn recent times, nanotechnology has drawn the attention of the scientific community because of the wide variety of applications that can be done with it, from food packaging to targeted drug delivery; the use of nanoparticles has been a breakthrough in science that has now reached the market. Silver nanoparticles (Ag NPs) have unique properties due to the oscillation of electrons in the superficial plasmon. These nanostructures have been used in different applications in the area of nanomedicine, such as: targeted drug delivery, sensing and imaging, anti-fungal, anti-cancerous and biosensors. It has become evident that pathogenic bacteria are resisting antibiotics such as Penicillin becoming one of the most worrying topics in the world. People in the science community fear the day when we no longer can use these antibiotics, because the resistance of bacteria became too great, leaving us defenceless against any type of pathogens and possibly causing a catastrophe. However, we theorize that the possible solution to this problem could be the use of silver nanoparticles, given that there has not been a documented bacterial adaptation strategy that could give them resistance to Ag NPs. The purpose of this study is to find how the water-stable silver nanoparticles interact with different strains, including Gram negative and Gram-positive bacteria. The main objectives of our research were to synthesize and characterize water stable silver nanoparticles and test their potential bactericidal activity. We synthesized our Ag NPs using sodium citrate as a reducing agent. After synthesizing the nanoparticles, their optical properties were characterized by Ultraviolet-visible spectroscopy (UV-Vis); crystalline structure was evaluated with Electron Diffraction (ED) and X-Ray Diffraction (XRD); morphology was assessed by High Resolution Transmission Electron Microscopy (HR-TEM). Fourier Transform Infra-Red Spectroscopy (FT-IR) was used to indicate functional groups involved in the nanoparticle capping. Cultures were prepared with agarose and inoculated with the following bacterial strains: Bacillus cereus (Gram +), Micrococcus luteus (Gram +), Staphylococcus aureus (Gram +), Escherichia coli (Gram -), Citrobacter freundii (Gram -), Enterobacter aerogenes (Gram -), Klebsiella pneumoniae (Gram -), Proteus mirabilis (Gram -), Proteus vulgaris (Gram -) and Serratia marcescens (Gram -). Preliminary tests showed an inhibition diameter that surpassed 1.0 cm in all bacterial strains. We expect our Ag NPs to have a potential antibacterial activity towards all types of bacteria, due to oxidation of silver (Ag0 to Ag+).


2021 ◽  
Vol 22 (21) ◽  
pp. 11993
Author(s):  
Ashvi Sanjay Jain ◽  
Pranita Subhash Pawar ◽  
Aira Sarkar ◽  
Vijayabhaskarreddy Junnuthula ◽  
Sathish Dyawanapelly

Among the various types of nanoparticles and their strategy for synthesis, the green synthesis of silver nanoparticles has gained much attention in the biomedical, cellular imaging, cosmetics, drug delivery, food, and agrochemical industries due to their unique physicochemical and biological properties. The green synthesis strategies incorporate the use of plant extracts, living organisms, or biomolecules as bioreducing and biocapping agents, also known as bionanofactories for the synthesis of nanoparticles. The use of green chemistry is ecofriendly, biocompatible, nontoxic, and cost-effective. We shed light on the recent advances in green synthesis and physicochemical properties of green silver nanoparticles by considering the outcomes from recent studies applying SEM, TEM, AFM, UV/Vis spectrophotometry, FTIR, and XRD techniques. Furthermore, we cover the antibacterial, antifungal, and antiparasitic activities of silver nanoparticles.


Author(s):  
Rohit Rajendra Bhosale ◽  
A S Kulkarni ◽  
S S Gilda ◽  
N H Aloorkar ◽  
R A Osmani ◽  
...  

Nanotechnology is an escalating field that has made its contribution to all spheres of human life. The green synthesis of nanoparticles has paved for better methodologies and approaches in the medicinal field. Nowadays silver, gold and other metallic nanoparticles are used as an efficient carrier for drug molecules for developing novel drug delivery systems. In course of synthesizing these nanoparticles various chemicals, solvents and reagents are used which harms our eco system directly or indirectly. Silver nanoparticles (Ag NPs) have been widely used as a novel therapeutic agent extending its use as antibacterial, antifungal, anti-viral and anti-inflammatory agent. Silver nanoparticles (Ag NPs) prepared by green synthesis have many advantages over conventional methods involving chemical agents associated with environmental toxicity. Green synthetic methods include polysaccharide method, irradiation method, biological method, polyoxometallates method and tollens method. Green synthesis of nanoparticles is found to be an emerging branch of nanotechnology. The use of environmentally benign materials like plant leaf extract for the synthesis of nanoparticles offers numerous benefits of eco-friendliness and compatibility for pharmaceutical and biomedical applications as they do not use toxic chemicals in the synthesis protocols. Rapid and green synthetic methods using various plant extracts have shown a great potential in silver nanoparticles (Ag NPs) synthesis. This review article describes the bio-inspired synthesis of nanoparticles that provides advancement over chemical and physical methods as it is cost effective, eco-friendly and more effective in a variety of applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 109241-109252 ◽  
Author(s):  
S. Raj Kumar ◽  
P. Gopinath

Herein, we have developed silver nanoparticles (Ag NPs) incorporated carboxylated multiwalled carbon nanotubes (MWCNTs) grafted aminated polyacrylonitrile (APAN) nanofibrous membrane pertinent for the removal of toxic heavy metals and bacteria.


Author(s):  
S. M. Yahya ◽  
Y. Abdulmumin ◽  
T. M. Abdulmumin ◽  
B. S. Sagagi ◽  
M. Murtala ◽  
...  

The green synthesis of silver nanoparticles proceeds through the reduction of silver ions by the phytochemicals as an initial step in the formation of the nanoparticles. The phytochemicals also involved in the subsequent steps by stabilization and directing the shape and size of nanoparticles. In this study, a mango pulp extract was used for the biosynthesis of silver nanoparticles (Ag-NPs) using “One pot biological method of synthesis” under ambient temperature. The biosynthesized silver nanoparticles were characterized through visual development of color,UV-VIS spectroscopy and Fourier transform infrared ray. The antimicrobial activities of the synthesized mango pulp Ag-NPs were determined using agar well diffusion method, MIC and MBC methods. The biosynthesized Ag-NPs showed a yellowish-brown color. Broad bell-shaped range bend was gotten from UV–Vis examination with different metabolites of MPAgNPs, this makes the plasmon band wide. Surface plasmon reverberation (SPR) of silver happens at 350 - 375 nm for the 7Nps at 2Mm concentration and 13Nps at 1Mm. The FTIR shows absorbance at 3335 m-1, 3324 m-1, 326 8 m-1, 3258 m-1, and 1640 m-1 were obtained for mango pulp extract-mediated (Ag-NPs), which indicated that proteins were the capping and stabilizing molecules in the biogenic synthesis of (Ag-NPs). Silver nanoparticles at various concentration of AgNO3 (2 mM, 1 mM, and 0.5 mM) have shown a profound effect by inhibiting the growth of E. Coli and S. Aureus with an inhibition zone of 12±0, 11.5±0.70, 11.33±1.5 and 12.5±2.12, 12±1.14, 12±4.24 using gentamycin as control (15.16±0.76. and 26.67±2.1) respectively, also MIC and MBC result of the MPAg-NPs extract have shown a –ve results confirming the potentiality of the extract against microbial forms. In conclusion, mango pulp silver nano particles demonstrated the feasibility of eco-friendly biogenic synthesis of Ag-NPs from a reliable, safe and available material (mango) that can be used for the green synthesis of Ag-NPs. And it also exhibits significant antimicrobial activity against gram –ve and gram +ve bacteria.


2018 ◽  
Vol 1 (01) ◽  
pp. 25-30
Author(s):  
S M Shaikh ◽  
T J Shaikh

Gold and Silver nanoparticles synthesized by various technique have received special attention because they have found potential application in many fields such as catalysis, sensors, drug delivery system. Additionally, silver nanaparticles possess an excellent biocompatibility and low toxicity. The present investigation have done to check out the synthetic compatibility of  Nano particles of some fungal strain i.e. Alternaria alternata, Aspergillus niger, Fusarium oxysporum, Pennicelium digitatum and Pennicelium spp.


Biomedicine ◽  
2020 ◽  
Vol 39 (4) ◽  
pp. 544-549
Author(s):  
G. K. Pratap ◽  
Manjula Shantaram

Introduction and Aim: The silver nanoparticles have attained a special place in the area of nanotechnology because of their different biological applications. Fabrication of nanoparticles using green synthesis is  done because of its wide applications in different fields such as biomedical, medicine, agriculture and food engineering. This study is to develop an easy and eco-friendly method for the synthesis of Ag-NPs using leaf extracts of the medicinal plant. Materials and Methods: The medicinal plants are rich sources of various medicinal properties. Olea dioica Roxb., leaf extract was used to investigate the effects of Ag-NPs having antibacterial activity and antioxidant capacity.  The plant leaf extract contains flavonoids, alkaloids, saponins, and phenolic compounds which acts as reducing and stabilizing agents. The green synthesized silver nanoparticles were characterized by various techniques like UV- visible spectrophotometer, FTIR spectroscopy, and SEM analysis. Results: The synthesis of sliver nanoparticles from plant source, and analysis of nano particles by UV-Vis spectra, SEM and FTIR. The biological evaluations of Ag-NPs indicated an excellent inhibitory efficacy, antioxidant and antimicrobial activity for their future applications in medicine. Conclusion: The synthesized silver nanoparticles exhibited potent antioxidant and antimicrobial activities against Gram-positive and Gram-negative bacteria. The silver (Ag-NPs) nanoparticles synthesized by the pot green synthesis method proves its potential use in various medical applications. Keywords: Silver nanoparticles; Medicinal plants; Ag-NPs; Olea dioica Roxb.,


Author(s):  
Manipriya B ◽  
Tasneem Banu ◽  
Prem Kumar L ◽  
Kalyani M

 Objective: To determine the virulence factors-biofilm, nuclease and phosphatase production in Staphylococcus aureus isolates. To determine the effect of silver nano particles and antibiotics on MRSA by MIC determination and kirby baeur method respectively and finally to compare antibacterial activity of silver nano particles and antibiotics.Methods: In the present study, we explore the antibacterial activity of silver nanoparticles (Ag-NPs) dispersion (10 nm) against reference strain and clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). We evaluated the antibacterial activity of Ag-NPs against MRSA isolated from patients in Saveetha Medical College and Hospital, a tertiary care centre in Chennai, Tamil Nadu. The bactericidal activity of different concentrations of Ag-NPs (200, 100, 50, 25, 12.5, 6.25, 3.125, and 1.5625 μg/ml) was tested by determining MIC using microbroth dilution and MBC by agar dilution methods.. In addition, the virulence factors phosphatase, nuclease, and biofilm production were tested.Result: The values of minimal inhibitory concentration and minimal bactericidal concentration of Ag-NPs against all clinical isolates of MRSA and a single of S. aureus were found in the range of 12.5–50 μg/ml and 12.5–25 μg/ml, respectively, indicating very good bactericidal activity. Ag-NPs with the highest concentration showed almost no growth for up to 16 h representing a bactericidal effect at this concentration. Effect was proportional to dose since 50.0 μg/ml was the most effective dose since the bacterial population did not recover and 12.5 μg/ml was the least effective. All the MRSA isolates were positive for the virulence factors.Conclusion: The study result suggests that Ag-NPs could be used as an effective alternative antibacterial agent.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 301-305
Author(s):  
DR SHOBHA RANI TENKAYALA ◽  
Pagadala R Sougandhi ◽  
Mekala. Reddeppa ◽  
Sapara Sekhar Harini ◽  
R. Gangadhara

In this study, rapid, simple approach was applied for synthesis of silver nanoparticles by using Psidium guajava aqueous leaf extract. The plant extract acts as both reducing agent and capping agent. The green synthesized silver nanoparticles were characterized by using physic-chemical techniques viz, UV-Visible spectroscopy, Fourier Transform Infrared Spectrophotometer [FTIR], Particle size analyser and Scanning electron microscopy. UV-Visible spectrophotometer showed absorbance peak in the range of 419nm.The compounds responsible for silver ions and the functional groups present in plant extract were identified and investigated by FTIR technique. The characterization data reveals that the particles were in crystalline in nature with an average size of 62nm. The silver nanoparticles (Ag NPs) were rapidly synthesized using aqueous extract of guava leaf with AgNO3 solution within 15min at room temperature, without the involvement of any hazardous chemicals. Keywords: Nano particles, green synthesis, Silver,  Psidium guajava and reducing agents.


Sign in / Sign up

Export Citation Format

Share Document