scholarly journals Investigation of Tribological Properties of Two-Component Bidisperse Epoxy-Polyester Composite Materials for Its Use in the Friction Units of Means of Sea Transport

2019 ◽  
Vol 63 (3) ◽  
pp. 171-182 ◽  
Author(s):  
Andriy Buketov ◽  
Mykola Brailo ◽  
Serhii Yakushchenko ◽  
Oleksandr Sapronov ◽  
Vasyl Vynar ◽  
...  

The tribological properties of complex polymeric materials, which include epoxy and polyester resins, two hardeners and two microdispersed fillers: mica-muscovite, copper (II) oxide, were investigated in the work. The results of the testing of specimens at dry friction and in the lubricant were analyzed. It is proved, that the antifriction properties of the composite depend on its composition, formation technology and testing conditions. It has been experimentally determined, that the material which was tested in the lubricating environment – Im = 0.25–0.30 mg/km, f = 0.03–0.04, differs with the improved indexes of wear rate and friction coefficient. As a result of the analysis of investigated microsurfaces studied by optical and electron microscopy, the phase heterogeneity of the composite material system was identified. It contributes to the reduction of the running-in distance of the specimen, and indicates the uniform distribution of the filler particles on the surface, has been found. The elemental composition of the compound was determined, which indicates the direct involvement of fillers in the process of friction. A change in the ratio of atoms on the specimen surface before and after the test was found. The results of the study of the surface in the phase contrast mode correlate with the results of the data obtained by electron microscopy.

2019 ◽  
Vol 5 (11) ◽  
pp. 242-248 ◽  
Author(s):  
T. Almataev ◽  
N. Almataev ◽  
D. Moidinov

Results of research and development of composite polymer materials are presented. The aim of this work was the study and development of new composite polymer materials with optimal performance properties for the working bodies of machines and mechanisms. The surface grinding of the samples was carried out using an eccentric rotary brush according to the procedure previously presented by the authors. Tribological properties of polymeric materials and coatings were determined on a tribometer. The results of the study showed that the degree of influence of fillers on the strength and antifriction properties of composite polymer materials depends on the type and nature of the filler and binder.


Author(s):  
D. L. Misell

In the electron microscopy of biological sections the adverse effect of chromatic aberration on image resolution is well known. In this paper calculations are presented for the inelastic and elastic image intensities using a wave-optical formulation. Quantitative estimates of the deterioration in image resolution as a result of chromatic aberration are presented as an alternative to geometric calculations. The predominance of inelastic scattering in the unstained biological and polymeric materials is shown by the inelastic to elastic ratio, I/E, within an objective aperture of 0.005 rad for amorphous carbon of a thickness, t=50nm, typical of biological sections; E=200keV, I/E=16.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Author(s):  
Martin J. Mahon ◽  
Patrick W. Keating ◽  
John T. McLaughlin

Coatings are applied to appliances, instruments and automobiles for a variety of reasons including corrosion protection and enhancement of market value. Automobile finishes are a highly complex blend of polymeric materials which have a definite impact on the eventual ability of a car to sell. Consumers report that the gloss of the finish is one of the major items they look for in an automobile.With the finish being such an important part of the automobile, there is a zero tolerance for paint defects by auto assembly plant management. Owing to the increased complexity of the paint matrix and its inability to be “forgiving” when foreign materials are introduced into a newly applied finish, the analysis of paint defects has taken on unparalleled importance. Scanning electron microscopy with its attendant x-ray analysis capability is the premier method of examining defects and attempting to identify their root cause.Defects are normally examined by cutting out a coupon sized portion of the autobody and viewing in an SEM at various angles.


Author(s):  
F. Shaapur

Non-uniform ion-thinning of heterogenous material structures has constituted a fundamental difficulty in preparation of specimens for transmission electron microscopy (TEM). A variety of corrective procedures have been developed and reported for reducing or eliminating the effect. Some of these techniques are applicable to any non-homogeneous material system and others only to unidirectionalfy heterogeneous samples. Recently, a procedure of the latter type has been developed which is mainly based on a new motion profile for the specimen rotation during ion-milling. This motion profile consists of reversing partial revolutions (RPR) within a fixed sector which is centered around a direction perpendicular to the specimen heterogeneity axis. The ion-milling results obtained through this technique, as studied on a number of thin film cross-sectional TEM (XTEM) specimens, have proved to be superior to those produced via other procedures.XTEM specimens from integrated circuit (IC) devices essentially form a complex unidirectional nonhomogeneous structure. The presence of a variety of mostly lateral features at different levels along the substrate surface (consisting of conductors, semiconductors, and insulators) generally cause non-uniform results if ion-thinned conventionally.


2021 ◽  
Vol 22 (13) ◽  
pp. 6805
Author(s):  
Mihaela-Cristina Bunea ◽  
Victor-Constantin Diculescu ◽  
Monica Enculescu ◽  
Horia Iovu ◽  
Teodor Adrian Enache

The electrochemical behavior and the interaction of the immunosuppressive drug azathioprine (AZA) with deoxyribonucleic acid (DNA) were investigated using voltammetric techniques, mass spectrometry (MS), and scanning electron microscopy (SEM). The redox mechanism of AZA on glassy carbon (GC) was investigated using cyclic and differential pulse (DP) voltammetry. It was proven that the electroactive center of AZA is the nitro group and its reduction mechanism is a diffusion-controlled process, which occurs in consecutive steps with formation of electroactive products and involves the transfer of electrons and protons. A redox mechanism was proposed and the interaction of AZA with DNA was also investigated. Morphological characterization of the DNA film on the electrode surface before and after interaction with AZA was performed using scanning electron microscopy. An electrochemical DNA biosensor was employed to study the interactions between AZA and DNA with different concentrations, incubation times, and applied potential values. It was shown that the reduction of AZA molecules bound to the DNA layer induces structural changes of the DNA double strands and oxidative damage, which were recognized through the occurrence of the 8-oxo-deoxyguanosine oxidation peak. Mass spectrometry investigation of the DNA film before and after interaction with AZA also demonstrated the formation of AZA adducts with purine bases.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2008
Author(s):  
Samsul Rizal ◽  
N. I. Saharudin ◽  
N. G. Olaiya ◽  
H. P. S. Abdul Khalil ◽  
M. K. Mohamad Haafiz ◽  
...  

The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1080
Author(s):  
Clever Aparecido Valentin ◽  
Marcelo Kobelnik ◽  
Yara Barbosa Franco ◽  
Fernando Luiz Lavoie ◽  
Jefferson Lins da Silva ◽  
...  

The use of polymeric materials such as geosynthetics in infrastructure works has been increasing over the last decades, as they bring down costs and provide long-term benefits. However, the aging of polymers raises the question of its long-term durability and for this reason researchers have been studying a sort of techniques to search for the required renewal time. This paper examined a commercial polypropylene (PP) nonwoven geotextile before and after 500 h and 1000 h exposure to ultraviolet (UV) light by performing laboratory accelerated ultraviolet-aging tests. The state of the polymeric material after UV exposure was studied through a wide set of tests, including mechanical and physical tests and thermoanalytical tests and scanning electron microscopy analysis. The calorimetric evaluations (DSC) showed distinct behaviors in sample melting points, attributed to the UV radiation effect on the aged samples. Furthermore, after exposure, the samples presented low thermal stability in the thermomechanical analysis (TMA), with a continuing decrease in their thicknesses. The tensile tests showed an increase in material stiffness after exposition. This study demonstrates that UV aging has effects on the properties of the polypropylene polymer.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1122
Author(s):  
Przemysław Pączkowski ◽  
Andrzej Puszka ◽  
Malgorzata Miazga-Karska ◽  
Grażyna Ginalska ◽  
Barbara Gawdzik

This paper presents the properties of the wood-resin composites. For improving their antibacterial character, silver nanoparticles were incorporated into their structures. The properties of the obtained materials were analyzed in vitro for their anti-biofilm potency in contact with aerobic Gram-positive Staphylococcus aureus and Staphylococcus epidermidis; and aerobic Gram-negative Escherichia coli and Pseudomonas aeruginosa. These pathogens are responsible for various infections, including those associated with healthcare. The effect of silver nanoparticles incorporation on mechanical and thermomechanical properties as well as gloss were investigated for the samples of composites before and after accelerating aging tests. The results show that bacteria can colonize in various wrinkles and cracks on the composites with wood flour but also the surface of the cross-linked unsaturated polyester resin. The addition of nanosilver causes the death of bacteria. It also positively influences mechanical and thermomechanical properties as well as gloss of the resin.


2021 ◽  
Vol 2021 (7) ◽  
pp. 12-18
Author(s):  
Mikhail Kulikov ◽  
Maksim Larionov ◽  
Denis Gusev ◽  
Evgeniy Shevchuk

In the paper there is under consideration an effort to achieve the roughness index of Ra <0.8 with the aid of soft abrasive tool use. As a result the purpose of this work became development of the technology for surface quality improvement of parts manufactured with the aid of additive technologies. The authors carried out a number of experiments with the samples manufactured with the aid of the method of FDM print. With the aid of 3D Ultra 3 printer of EnvisionTec company. The samples were made of ABS-plastic in the amount of 6 pieces. On each sample there were defects after printing which contributed to the deterioration of surface quality in products. By means of TR220 profilometer there was measured roughness before and after the experiment. There was carried out dry processing and with the use of SCL. As a result, dry processing resulted in worsening surface quality, heavy wear of an abrasive tool and grain contamination. Analyzing the data obtained from the profilometer in the experiment and SCL use a considerable improvement of the surface layer quality at minimum allowance is observed. Investigation methods: in the work basis there are experimental methods of investigation. The investigations are carried out with the use of a microscope and profilometer. Processing investigation results was carried out as a result of the comparison of the measuring data obtained. Work Novelty: there are defined conditions of soft abrasive tool operation and SCL impact upon Ra indices. The results obtained indicate a possibility of Ra improvement on a part surface which is achieved due to a combined shaping with the aid of additive technologies and further machining carried out on a single technological basis. The experience without SCL use has shown the overheating possibility the result of which is a meltback and plastic sticking both on the surface, and on abrasive grains of the cutter which is inadmissible and results in considerable worsening of Ra on the surface machined and cutter wear. In view of this the SCL use in finishing is promising, but to achieve better results SCL chemistry must be improved.


Sign in / Sign up

Export Citation Format

Share Document