scholarly journals Interpolyelectrolyte Complexes Based on Eudragit® Copolymers as Carriers for Bioadhesive Gastroretentive Metronidazole Delivery System

2020 ◽  
Vol 9 (2) ◽  
pp. 72-76
Author(s):  
D. S. Gordeeva ◽  
A. V. Sitenkova (Bukhovets) ◽  
R. I. Moustafine

Introduction. There are a number of drugs, the absorption zone of which is the upper region of the gastrointestinal tract (GIT) – the stomach and duodenum. To increase bioavailability, gastroretentive (intragastric) systems for the controlled drug delivery are being developed. To date, there are various approaches to ensure intragastric drug delivery. One of the most promising approaches is the use of excipients with bioadhesive properties, both individually and in combination with other types of gastroretentive systems.Aim. Development and research of new carriers for gastroretentive bioadhesive drug delivery systems based on interpolyelectrolyte complexes (IPEC) with the participation of chemically complementary poly(meth)acrylates of the Eudragit®.Materials and methods. The study of swelling ability was carried out in a medium of 0.1 M hydrochloric acid solution (pH 1.2) at a temperature of 37 ± 0.5 °C for 6 hours. The study of the release of metronidazole (MZ) from matrices based on the corresponding IPEC was performed on a DFZ II instrument (ERWEKA, Germany) according to the Flow Trough Cell method in 0.1 M HCl medium, pH 1.2, flow rate 4 ml/min in a closed cycle within 6 hours. The amount of released MZ was estimated by UV spectrophotometry on a Lambda 25 instrument (PerkinElmer, USA) at a wavelength of 274 nm. IPEC adhesion was studied using a TA.XTplus texture analyzer (Stable Micro Systems, UK).Results and discussion. Matrices based on IPEC 1 were disintegrated after being in a medium with a pH of 1.2 for 4 hours, matrices based on IPEC 4 were dissolved in an acidic medium for 3 hours. At the same time, matrices based on IPEC 2 and IPEC 3 retain their shape throughout the experiment and are characterized by rather high values of the degree of swelling. IPEC samples are characterized by higher adhesion performance compared to individual copolymers. The release of metronidazole from matrices based on IPEC 1 occurs in accordance with Fick's law of diffusion; from the matrix based on IPEC 4, MZ is released according to the anomalous transport mechanism.Conclusion. IPEC 3 is promising for use as carrier for gastroretentive bioadhesive systems of controlled delivery of metronidazole.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 725
Author(s):  
Yuseon Shin ◽  
Patihul Husni ◽  
Kioh Kang ◽  
Dayoon Lee ◽  
Sehwa Lee ◽  
...  

The combination of nanotechnology and chemotherapy has resulted in more effective drug design via the development of nanomaterial-based drug delivery systems (DDSs) for tumor targeting. Stimulus-responsive DDSs in response to internal or external signals can offer precisely controlled delivery of preloaded therapeutics. Among the various DDSs, the photo-triggered system improves the efficacy and safety of treatment through spatiotemporal manipulation of light. Additionally, pH-induced delivery is one of the most widely studied strategies for targeting the acidic micro-environment of solid tumors. Accordingly, in this review, we discuss representative strategies for designing DDSs using light as an exogenous signal or pH as an endogenous trigger.


Author(s):  
Manohar D Mullassery ◽  
Noeline B Fernandez ◽  
Surya R ◽  
Diana Thomas

Objective: The scope of the present study was the preparation and characterization of a novel composite acrylamide β-cyclodextrin grafted 3-aminopropyltriethoxysilane bentonite (AMCD-g-APSB), for the controlled delivery of curcumin (CUR).Methods: AMCD-g-APSB, was synthesized by solvent-free conditions using microwave irradiation. The structure and surface morphology of the composite was established using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal analysis, etc.Results: The swelling percentage of the composite depends on both time and pH of the medium. The maximum swelling of the composite occurred at a pH of 7.4. The maximum drug encapsulation was occurring at a pH 3. About 96.5% of drug was loaded at pH 3. In vitro biocompatibility study was performed, and the result showed good biocompatibility of the composite in the concentration range 2.5–50 μg/ml.Conclusions: Drug delivery study of the composite proved that CUR could be successfully released in a controlled manner in the colon without much loses of the drug in the stomach.


2014 ◽  
Vol 69 (5) ◽  
Author(s):  
Shafiyah Pondi ◽  
Jon Efendi ◽  
Ho Chin Siong ◽  
Lai Sin Yuan ◽  
Sheela Chandren ◽  
...  

The drug-delivery field has been an attractive as well as challenging area for research. With the emerging of new formulated drugs and pharmaceutical compounds, development of good drug-delivery system (DDS) is crucially required. This study aims to utilize albumin as the drug template in silica/albumin/drug (S/A/D) system. Prior to designing this system, the interaction between silica and albumin was investigated. It is hypothesized that high interaction between silica and albumin may result in slower drug release over time, which is preferred for a good DDS. Silica and albumin (S/A) materials were prepared by using fumed silica and tetraethyl orthosilicate (TEOS) as the silica precursors. Three different S/A samples were prepared; fumed silica with albumin (FS/A), fumed silica with pre-treated albumin by sodium borohydrate (FS/A-N), and silica sol (TEOS) with albumin (SS/A). In-vitro release of albumin in phosphate buffer solution (pH 7) was carried out to examine the interaction between albumin and silica. The concentration of albumin was detected at 280 nm by UV-visible spectrophotometer. All samples were characterized by diffuse reflectance-UV-visible spectrophotometer (DR-UV), Fourier transform infrared spectrophotometer (FTIR) dan thermogravimetric-differential thermal analysis (TG-DTA). DR-UV results show that SS/A exhibited the lowest absorption intensity at 280 nm, which indicates better interaction between silica and albumin. This result was supported by the presence of Si-O stretching band of silanol at 952 cm-1 from the FTIR spectrum. Release study of albumin demonstrated that the release of albumin from SS/A was slowest compared to those of FS/A and FS/A-N. 


2021 ◽  
Author(s):  
Chen Xin ◽  
Dongdong Jin ◽  
Yanlei Hu ◽  
Liang Yang ◽  
Rui Li ◽  
...  

Abstract Microrobots have attracted great attentions due to their wide applications in microobjects manipulation and targeted drug delivery. To realize more complex micro/nano cargos manipulation (e.g., encapsulation and release) in biological applications, endowing microrobots with shapes adaptability with the environment is highly desirable. Here, designable shape-morphing microrobots (SMMRs) have been developed by programmatically encoding different expansion rate in a pH-responsive hydrogel. Combined with magnetic propelling, the shape-morphing microcrab (SMMC) is capable of performing targeted microparticle delivery, including gripping, transporting, and releasing through claws morphing. As a proof-of-concept demonstration, the shape-morphing microfish (SMMF) is designed to encapsulate drug (doxorubicin (DOX)) by closing mouth in phosphate buffer saline (PBS, pH~7.4) and release them by opening mouth in slightly acid solution (pH<7), which realize localized Hela cells treatment in an artificial vascular network. These SMMRs with powerful shape morphing capabilities and remote motion controllability provide new platforms for complex microcargos operation and on-demand drug release.


Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve

Background: Polymers are the backbone of modern pharmaceutical formulations and drug delivery technologies. Polymers that may be natural, synthetic, or semisynthetic are used to control the release of drugs in a pre-programmed fashion. The drug delivery systems are mainly prepared to enhance the bioavailability, site-specific release, sustained release, controlled release, i.e., to modify the release of drug from dosage form may be a tablet, capsule, etc. Objective: The objective of the present study is to overview the recent patents concerning the application of eudragit in the prevention of cancer and other ailments. Eudragit polymers are polymethacrylates and may be anionic, cationic, or non-ionic polymers of methacrylic acid, dimethyl-aminoethyl methacrylates, and methacrylic acid esters in varying ratios. Eudragit is available in various grades with solubilities at different pH, thus helping the formulators design the preparation to have a well-defined release pattern. Method: In this review, patent applications of eudragit in various drug delivery systems employed to cure mainly cancer are covered. Results : Eudragit has proved its potential as a polymer to control the release of drugs as coating polymer and formation of the matrix in various delivery systems. It can increase the bioavailability of the drug by site-specific drug delivery and can reduce the side effects/toxicity associated with anticancer drugs. Conclusion: The potential of eudragit to carry the drug may unclutter novel ways for therapeutic intercessions in various tumors.


Author(s):  
Dimple Sethi Chopra

Nanocomposites are a class of materials in which one or more phases with nanoscale dimensions are embedded in a metal, ceramic, or polymer matrix. The properties of nanocomposites depend on matrix, loading, degree of dispersion, size, shape, and orientation of the nanoscale phase and interaction between the matrix and the nanoscale phase. Nanocomposites are generally prepared using direct melt intercalation. The formation of nanocomposite is ascertained by XRD pattern, FTIR spectra, electron microscopy, and thermal analysis like DSC and TGA. Nanocomposites have properties of nanoparticles, multifunctional capabilities, chemical functionalization, huge interphase zone. Novel nanomaterials offer a new chemotherapeutic route for cancer treatment by combining cell imaging and hyperthermia in a synergistic way. In spite of toxicity and safety concerns, multifunctional nanocomposite still interest the researchers because of emergence of versatile properties, better understanding of disease biomarkers, and quest for ways to improve biocompatibility.


2018 ◽  
Vol 57 (2) ◽  
pp. 175-182
Author(s):  
E.G. Zemtsova ◽  
A.N. Ponomareva ◽  
A.Y. Arbenin ◽  
V.M. Smirnov

Abstract The important stage of the development of smart material for the target drug delivery is the construction of the magnetic part of this material, including mesoporous silica and magnetic nanoparticles (Fe3O4or Fe0). Such a systemwill allow carry outmagnetic decapsulation (excretion) of drug from smart material using the magnetic field of a given value in the right place of the body. The paper considers the features of synthesis mesoporous silica MCM-41 with various pore diameter (33-51 Å) and synthesis of superparamagnetic nanoparticles of magnetite or metallic iron in the pores of mesoporous silica. The dependence of magnetic properties of nanocomposites MCM-41/Fe0 and MCM-41/Fe3O4 from the pore diameters of MCM-41 templates is studied. It was found that the matrix has a decisive influence on the content of iron or magnetite nanoparticles. The saturation magnetization of the material increases with increasing pore size of the mesoporous matrix. Nanocomposites MCM-41/Fe0 and MCM-41/Fe3O4 exhibit superparamagnetism, that allows them to be used as a magnetic material for targeted drug delivery.


2019 ◽  
Vol 10 (8) ◽  
pp. 527-550 ◽  
Author(s):  
Vahid Taghipour-Sabzevar ◽  
Tahere Sharifi ◽  
Mehrdad Moosazadeh Moghaddam

In recent decades, many novel methods by using nanoparticles (NPs) have been investigated for diagnosis, drug delivery and treatment of cancer. Accordingly, the potential of NPs as carriers is very significant for the delivery of anticancer drugs, because cancer treatment with NPs has led to the improvement of some of the drug delivery limitations such as low blood circulation time and bioavailability, lack of water solubility, drug adverse effect. In addition, the NPs protect drugs against enzymatic degradation and can lead to the targeted and/or controlled release of the drug. The present review focuses on the potential of NPs that can help the targeted and/or controlled delivery of anticancer agents for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document