scholarly journals Root growth in tomato seedlings in response to bacterial inoculation Serratia sp.

2020 ◽  
Vol 9 (7) ◽  
pp. e89973634
Author(s):  
Ana Carla Pinheiro Lima ◽  
Leonardo Oliveira Medici ◽  
Débora Alves Gonzaga da Silva Ballesteiro Pereira ◽  
Eduardo de Assis Lima

Growth-promoting rhizobacteria are soil bacteria that inhabit the surrounding root, and are directly or indirectly involved in promoting plant growth and development. The productivity efficiency of these groups of microorganisms can be applied to planting crops, providing an interesting alternative for minimize the negative effects of water deficit. The objective of this study was to verify if the mechanism of growth promotion of the bacterium is similar to that promoted by polyethylene glycol (PEG) and to compare the possible effects of water stress on the tomato against the effects of inoculation of the bacterium Serratia sp. The methodology was based on in vitro bioassays using tomato (Solanum lycopersicum L.) seedlings, kept in a growth chamber with temperature of 25 °C and photoperiod of 12 hours. The results revealed that the promotion of tomato root growth by Serratia sp. is similar to that promoted by PEG 7%, differing significantly from the results found with different doses of indoleacetic acid (IAA). The promotion of root growth in tomatoes by Serratia sp. and PEG 7% partly indicates a physical effect, since the water restriction imposed by the PEG molecule decreases the water movement capacity, also observed by bacteria, when colonizing plant tissues and cells (biofilm) reducing the hydraulic conductivity of water through the root. Stimulation to promote root growth in tomatoes cannot be reproduced by auxin.

2014 ◽  
Vol 65 (1) ◽  
pp. 71-77
Author(s):  
Ghazala Nasim ◽  
Sobia Mushtaq ◽  
Irum Mukhtar ◽  
Ibatsam Khokhar

AbstractPenicilliumspp. are well known to produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. In this study, effects of culture filtrate of differentPenicilliumspp. were tested on tomato seeds. On the whole, presoaking of seeds in filtrates of the ninePenicilliumisolates tested, significantly increased seed germination when compared with the control seeds. Cultural extracts ofP. expensumandP. billiwere highly effective in growth promotion up to 90%. It was also observed thatP. implicatumandP. oxlalicamsignificantly enhanced the root growth in tomato seedling as compare to other species. In case of shoot length,P. verrucosum(3.38),P. granulatum(2.81) andP. implicatum(2.62) were effective. HoweverP. implicatumwas quite promising to increase shoot and root length in tomato seedlings. Where asP. simplicissimiumandP. citrinumwere leas effective on seedling growth. The plant growth promoting ability ofPenicilliumstrains may help in growth permotion in other plants and crops.Penicilliumspp. are already known for producing mycotoxin and enzymes. Plant growth promoting ability ofPenicilliumspp will open new aspects of research and investigations. The role ofPenicil-liumspp. in tomato plant growth requires further exploration.


2011 ◽  
Vol 35 (5) ◽  
pp. 1609-1617 ◽  
Author(s):  
Alexandre Christofaro Silva ◽  
Luciano Pasqualoto Canellas ◽  
Fábio Lopes Olivares ◽  
Leonardo Barros Dobbss ◽  
Natalia Oliveira Aguiar ◽  
...  

Peats are an important reserve of humified carbon in terrestrial ecosystems. The interest in the use of humic substances as plant growth promoters is continuously increasing. The objective of this study was to evaluate the bioactivity of alkaline soluble humic substances (HS), humic (HA) and fulvic acids (FA) isolated from peats with different decomposition stages of organic matter (sapric, fibric and hemic) in the Serra do Espinhaço Meridional, state of Minas Gerais. Dose-response curves were established for the number of lateral roots growing from the main plant axis of tomato seedlings. The bioactivity of HA was greatest (highest response in lateral roots at lowest concentration) while FA did not intensify root growth. Both HS and HA stimulated root hair formation. At low concentrations, HS and HA induced root hair formation near the root cap, a typical hormonal imbalance effect in plants. Transgenic tomato with reporter gene DR5::GUS allowed the observation that the auxin-related signalling pathway was involved in root growth promotion by HA.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1494
Author(s):  
Serkan Tokgöz ◽  
Dilip K. Lakshman ◽  
Mahmoud H. Ghozlan ◽  
Hasan Pinar ◽  
Daniel P. Roberts ◽  
...  

The root nodules are a unique environment formed on legume roots through a highly specific symbiotic relationship between leguminous plants and nodule-inducing bacteria. Previously, Rhizobia were presumed to be the only group of bacteria residing within nodules. However, recent studies discovered diverse groups of bacteria within the legume nodules. In this report soybean nodule-associated bacteria were studied in an effort to identify beneficial bacteria for plant disease control and growth promotion. Analysis of surface-sterilized single nodules showed bacterial diversity of the nodule microbiome. Five hundred non-rhizobial colonies from 10 nodules, 50 colonies per nodule, were tested individually against the tomato wilt causing bacterial pathogen Clavibacter michiganensis subsp. michiganensis (Cmm) for inhibition of pathogen growth. From the initial screening, 54 isolates were selected based on significant growth inhibition of Cmm. These isolates were further tested in vitro on another bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and two fungal pathogens Rhizoctonia solani and Sclerotinia sclerotiorum. Bacterial metabolites were extracted from 15 selected isolates with ethanol and tested against pathogen Cmm and Pst. These isolates were identified by using MALDI-TOF mass spectrometry and 16S rRNA gene sequencing. Pseudomonas spp. were the dominant soybean nodule-associated non-rhizobial bacterial group. Several isolates imparted significant protection against pathogens and/or plant growth promotion on tomato seedlings. The most promising nodule-associated bacterial isolate that suppressed both Cmm and Pst in vitro and Pst in tomato seedlings was identified as a Proteus species. Isolation and identification of beneficial nodule-associated bacteria established the foundation for further exploration of potential nodule-associated bacteria for plant protection and growth promotion.


Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1132
Author(s):  
Ricardo Aravena ◽  
Ximena Besoain ◽  
Natalia Riquelme ◽  
Aldo Salinas ◽  
Miryam Valenzuela ◽  
...  

Tomatoes (Solanum lycopersicum L.) are the most cultivated and important vegetable crop in the world. These plants can wilt during crop growth due to fusarium wilt (fusariosis), a disease that damages tomato vascular systems. The Fusarium isolated and analyzed in this work correspond to Fusarium oxysporum f. sp. radicis-lycopersici. The isolates were molecularly identified, and analysis was done on the in vitro effects of the nanoemulsions (previously obtained from extracts of Chilean medicinal plants of the genera Psoralea and Escallonia) to inhibit mycelial and conidial germination of the isolates. Subsequently, the nanoemulsions were evaluated under greenhouse conditions for preventive control of fusariosis in the root and crown, with high levels of disease control observed using the highest concentrations of these nanoemulsions, at 250 and 500 ppm.


2020 ◽  
Vol 8 (3) ◽  
pp. 412
Author(s):  
Esther Menéndez ◽  
Juan Pérez-Yépez ◽  
Mercedes Hernández ◽  
Ana Rodríguez-Pérez ◽  
Encarna Velázquez ◽  
...  

Mesorhizobium contains species widely known as nitrogen-fixing bacteria with legumes, but their ability to promote the growth of non-legumes has been poorly studied. Here, we analyzed the production of indole acetic acid (IAA), siderophores and the solubilization of phosphate and potassium in a collection of 24 strains belonging to different Mesorhizobium species. All these strains produce IAA, 46% solubilized potassium, 33% solubilize phosphate and 17% produce siderophores. The highest production of IAA was found in the strains Mesorhizobium ciceri CCANP14 and Mesorhizobium tamadayense CCANP122, which were also able to solubilize potassium. Moreover, the strain CCANP14 showed the maximum phosphate solubilization index, and the strain CCANP122 was able to produce siderophores. These two strains were able to produce cellulases and cellulose and to originate biofilms in abiotic surfaces and tomato root surface. Tomato seedlings responded positively to the inoculation with these two strains, showing significantly higher plant growth traits than uninoculated seedlings. This is the first report about the potential of different Mesorhizobium species to promote the growth of a vegetable. Considering their use as safe for humans, animals and plants, they are an environmentally friendly alternative to chemical fertilizers for non-legume crops in the framework of sustainable agriculture.


1995 ◽  
Vol 73 (02) ◽  
pp. 219-222 ◽  
Author(s):  
Manuel Monreal ◽  
Luis Monreal ◽  
Rafael Ruiz de Gopegui ◽  
Yvonne Espada ◽  
Ana Maria Angles ◽  
...  

SummaryThe APTT has been considered the most suitable candidate to monitor the anticoagulant activity of hirudin. However, its use is hampered by problems of standardization, which make the results heavily dependent on the responsiveness of the reagent used. Our aim was to investigate if this different responsiveness of different reagents when added in vitro is to be confirmed in an ex vivo study.Two different doses of r-hirudin (CGP 39393), 0.3 mg/kg and 1 mg/kg, were administered subcutaneously to 20 New Zealand male rabbits, and the differences in prolongation of APTT 2 and 12 h later were compared, using 8 widely used commercial reagents. All groups exhibited a significant prolongation of APTT 2 h after sc administration of hirudin, both at low and high doses. But this prolongation persisted 12 h later only when the PTTa reagent (Boehringer Mannheim) was used. In general, hirudin prolonged the APTT most with the silica- based reagents.In a further study, we compared the same APTT reagents in an in vitro study in which normal pooled plasma was mixed with increasing amount of hirudin. We failed to confirm a higher sensitivity for silica- containing reagents. Thus, we conclude that subcutaneous administration of hirudin prolongs the APTT most with the silica-based reagents, but this effect is exclusive for the ex vivo model.


2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


2020 ◽  
Vol 18 (2) ◽  
pp. 148-157 ◽  
Author(s):  
Triantafyllos Didangelos ◽  
Konstantinos Kantartzis

The cardiac effects of exogenously administered insulin for the treatment of diabetes (DM) have recently attracted much attention. In particular, it has been questioned whether insulin is the appropriate treatment for patients with type 2 diabetes mellitus and heart failure. While several old and some new studies suggested that insulin treatment has beneficial effects on the heart, recent observational studies indicate associations of insulin treatment with an increased risk of developing or worsening of pre-existing heart failure and higher mortality rates. However, there is actually little evidence that the associations of insulin administration with any adverse outcomes are causal. On the other hand, insulin clearly causes weight gain and may also cause serious episodes of hypoglycemia. Moreover, excess of insulin (hyperinsulinemia), as often seen with the use of injected insulin, seems to predispose to inflammation, hypertension, dyslipidemia, atherosclerosis, heart failure, and arrhythmias. Nevertheless, it should be stressed that most of the data concerning the effects of insulin on cardiac function derive from in vitro studies with isolated animal hearts. Therefore, the relevance of the findings of such studies for humans should be considered with caution. In the present review, we summarize the existing data about the potential positive and negative effects of insulin on the heart and attempt to answer the question whether any adverse effects of insulin or the consequences of hyperglycemia are more important and may provide a better explanation of the close association of DM with heart failure.


2016 ◽  
Vol 5 (03) ◽  
pp. 4927 ◽  
Author(s):  
Shubhi Srivastava ◽  
Paul A. K.

Plant associated microorganisms that colonize the upper and internal tissues of roots, stems, leaves and flowers of healthy plants without causing any visible harmful or negative effect on their host. Diversity of microbes have been extensively studied in a wide variety of vascular plants and shown to promote plant establishment, growth and development and impart resistance against pathogenic infections. Ferns and their associated microbes have also attracted the attention of the scientific communities as sources of novel bioactive secondary metabolites. The ferns and fern alleles, which are well adapted to diverse environmental conditions, produce various secondary metabolites such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, variety of amino acids and fatty acids along with some unique metabolites as adaptive features and are traditionally used for human health and medicine. In this review attention has been focused to prepare a comprehensive account of ethnomedicinal properties of some common ferns and fern alleles. Association of bacteria and fungi in the rhizosphere, phyllosphere and endosphere of these medicinally important ferns and their interaction with the host plant has been emphasized keeping in view their possible biotechnological potentials and applications. The processes of host-microbe interaction leading to establishment and colonization of endophytes are less-well characterized in comparison to rhizospheric and phyllospheric microflora. However, the endophytes are possessing same characteristics as rhizospheric and phyllospheric to stimulate the in vivo synthesis as well as in vitro production of secondary metabolites with a wide range of biological activities such as plant growth promotion by production of phytohormones, siderophores, fixation of nitrogen, and phosphate solubilization. Synthesis of pharmaceutically important products such as anticancer compounds, antioxidants, antimicrobials, antiviral substances and hydrolytic enzymes could be some of the promising areas of research and commercial exploitation.


Sign in / Sign up

Export Citation Format

Share Document