scholarly journals Study on the Pharmacological Character of an Insulin-Mimetic Small Molecular Compound of Vanadyl Trehalose

2020 ◽  
pp. 481-490
Author(s):  
M UMAR ◽  
W QIAN ◽  
Q LIU ◽  
S XING ◽  
X LI ◽  
...  

To investigate the effect of vanadyl trehalose (VT) on oxidative stress and reduced glutathione/glutathione-S-transferase (GSH/GSTs) pathway gene expression in mouse gastrointestinal tract, as well as the protective effects of vitamin C (VC) and reduced glutathione (GSH). Thirty male Kunming mice were randomly divided into five groups: control group (group A), VT group (group B), VC + VT group (group C), GSH + VT group (group D) and VC + GSH + VT group (group E). The content of reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) activity and the expressions of glutamate-cysteine ligase catalytic subunit (GCLC), glutathione synthetase (GSS), regulated through glutathione reductase (GSR) and glutathione-S-transferase pi (GSTpi) in stomach and duodenum in vanadyl trehalose treated group were lower than those in group A (P<0.05). The C, D, E group can significantly improve the above indicators, but those only in the stomach in E group reached the level of the control group. Vanadyl trehalose (VT) was able to cause oxidative stress damage to the gastrointestinal tract of mice, which affects GSH content and GSH-Px activity and interferes with the normal expression of GSH/GSTs pathway. Exogenous vitamin C, reduced glutathione and the combination of the two could play a specific role in antioxidant protection and reduce the toxicity of vanadyl trehalose.

1997 ◽  
Vol 273 (1) ◽  
pp. R219-R225 ◽  
Author(s):  
W. G. Willmore ◽  
K. B. Storey

Effects of anoxic submergence (20 h at 5 degrees C) and subsequent 24 h aerobic recovery on glutathione levels and the activities of glutathione-related enzymes were examined in six tissues of Trachemys scripta elegans. Anoxia exposure resulted in tissue-specific changes in enzyme maximal activities, the most dramatic being suppression of gamma-glutamyl transpeptidase (gamma-GTPase) activity in anoxic kidney to only 2% of control. Anoxia exposure also caused significant decreases in activities of liver and heart glutathione-S-transferase (GST) (by 25 and 42%), heart glutathione reductase (GR) (by 67%), liver gamma-GTPase (by 71%), and red muscle glutaredoxin (GRN) (by 56%). By contrast, anoxia exposure increased the activities of GR in liver and red muscle (by 52 and 80%), glutathione synthetase (GS) in white muscle (by 300%), and GRN in white muscle (by 400%). During aerobic recovery after anoxia, GST activity decreased in red muscle, kidney, and brain (by 72, 56, and 39%); GR decreased in liver and red muscle (by 52 and 80%); and GRN fell in red muscle (by 56%). Other activities rose during recovery: GR in heart (by 64%), GS in heart and brain (by 200%), and gamma-GTPase in brain (by 63%). Tissue pools of total glutathione were high in comparison with other ectotherms. Levels decreased during anoxia in four organs to 49-67% of control values. During aerobic recovery the reduced glutathione-to-oxidized glutathione ratio (GSH/GSSG) increased in heart, kidney, and brain, indicating that oxidative stress did not occur in these organs. Rather than maintaining high levels of glutathione in tissues to prevent oxidative stress during aerobic recovery, turtles sustain high GSH/GSSG by regulating the activities of glutathione-using enzymes.


2020 ◽  
Vol 72 (1) ◽  
pp. 9-17 ◽  
Author(s):  
S.C.C. Pinto ◽  
D.S. Almeida ◽  
M.B.R. Alves ◽  
S.A. Florez-Rodriguez ◽  
G.S. Abreu Júnior ◽  
...  

ABSTRACT The aim of this study was to evaluate the addition of vitamin C, reduced glutathione and the association thereof to the bovine semen cryopreservation extender. The ejaculate from nine bulls were divided into four fractions, each corresponding to a treatment, namely: control group-semen diluted with Tris-yolk extender; vitamin C group-semen diluted in Tris-yolk extender supplemented with vitamin C (2.5mmol/mL); glutathione group-semen diluted in Tris-yolk extender supplemented with reduced glutathione (2.5mmol/mL) and associated group-semen diluted in Tris-yolk extender supplemented with vitamin C (1.25mmol/mL) and reduced glutathione (1.25mmol/mL). Afterwards, the semen was packed into French straws and submitted to cryopreservation using automated equipment. After cryopreservation, the semen was thawed and evaluated considering sperm motility, morphology, plasma membrane, acrosome, mitochondrial potential and oxidative stress, as well as the thermo resistance test. Extender’s supplementation with the association of vitamin C and reduced glutathione showed benefic effects on sperm motility and preservation of plasma and acrosomal membranes during semen cryopreservation, being also the group that showed higher values of reactive oxygen species. Thus, the association of both antioxidants contributed to the preservation of sperm cells in every analyzed characteristic, suggesting its use on bovine semen cryopreservation.


2020 ◽  
Vol 17 (3) ◽  
pp. 191-199
Author(s):  
Seval Yilmaz ◽  
Fatih Mehmet Kandemir ◽  
Emre Kaya ◽  
Mustafa Ozkaraca

Objective: This study aimed to detect hepatic oxidative damage caused by aflatoxin B1 (AFB1), as well as to examine how propolis protects against hepatotoxic effects of AFB1. Method: Rats were split into four groups as control group, AFB1 group, propolis group, AFB1+ propolis group. Results: There was significant increase in malondialdehyde (MDA) level and tumor suppressor protein (TP53) gene expression, Glutathione (GSH) level, Catalase (CAT) activity, CAT gene expression decreased in AFB1 group in blood. MDA level and Glutathione-S-Transferase (GST) activity, GST and TP53 gene expressions increased in AFB1 group, whereas GSH level and CAT activity alongside CAT gene expression decreased in liver. AFB1+propolis group showed significant decrease in MDA level, GST activity, TP53 and GST gene expressions, GSH level and CAT activity and CAT gene expression increased in liver compared to AFB1 group. Conclusion: These results suggest that propolis may potentially be natural agent that prevents AFB1- induced oxidative stress and hepatotoxicity.


2021 ◽  
pp. 096032712110134
Author(s):  
O Zouaoui ◽  
K Adouni ◽  
A Jelled ◽  
A Thouri ◽  
A Ben Chrifa ◽  
...  

Phytochemical composition and antioxidant activity of flowers decoction at post-flowering stage (F3D) of Opuntia dejecta were determined. The obtained findings demonstrate that F3D has a marked antioxidant activity in all tested assays. Furthermore, the present study was designed to test the protective activity of F3D against induced Diabetes type 2 (DT2) in male rats. Those metabolic syndromes were induced by a high-fructose diet (HFD) (10% fructose solution) for a period of 20 weeks. F3D was administered orally (100 and 300 mg/kg body weight) daily for the last 4 weeks. Metformin (150 mg/kg body weight) was used as a standard drug and administrated orally for the last 4 weeks. The results showed a significant increase in blood glucose, triglycerides and hepatic markers (ALAT, ASAT and ALK-P) in HFD group. A significant increase in hepatic TBARS and a significant decrease in SOD, CAT and GPX were observed in fructose fed rats compared to control group. Administration of F3D showed a protective effect in biochemical and oxidative stress parameters measured in this study. Also, oral administration of F3D restored the histological architecture of rat liver in comparison with rats fed HFD. In conclusion, F3D attenuated hepatic oxidative stress in fructose-fed rats.


Author(s):  
Patricia Tomás-Simó ◽  
Luis D’Marco ◽  
María Romero-Parra ◽  
Mari Carmen Tormos-Muñoz ◽  
Guillermo Sáez ◽  
...  

Background: Cardiovascular complications are the leading cause of morbidity and mortality at any stage of chronic kidney disease (CKD). Moreover, the high rate of cardiovascular mortality observed in these patients is associated with an accelerated atherosclerosis process that likely starts at the early stages of CKD. Thus, traditional and non-traditional or uremic-related factors represent a link between CKD and cardiovascular risk. Among non-conventional risk factors, particular focus has been placed on anaemia, mineral and bone disorders, inflammation, malnutrition and oxidative stress and, in this regard, connections have been reported between oxidative stress and cardiovascular disease in dialysis patients. Methods: We evaluated the oxidation process in different molecular lines (proteins, lipids and genetic material) in 155 non-dialysis patients at different stages of CKD and 45 healthy controls. To assess oxidative stress status, we analyzed oxidized glutathione (GSSG), reduced glutathione (GSH) and the oxidized/reduced glutathione ratio (GSSG/GSH) and other oxidation indicators, including malondialdehyde (MDA) and 8-oxo-2’-deoxyguanosine (8-oxo-dG). Results: An active grade of oxidative stress was found from the early stages of CKD onwards, which affected all of the molecular lines studied. We observed a heightened oxidative state (indicated by a higher level of oxidized molecules together with decreased levels of antioxidant molecules) as kidney function declined. Furthermore, oxidative stress-related alterations were significantly greater in CKD patients than in the control group. Conclusions: CKD patients exhibit significantly higher oxidative stress than healthy individuals, and these alterations intensify as eGFR declines, showing significant differences between CKD stages. Thus, future research is warranted to provide clearer results in this area.


Author(s):  
Akinleye Stephen Akinrinde ◽  
Halimot Olawalarami Hameed

Abstract Objectives This study examined the possible protective roles of exogenous glycine (Gly) and L-Arginine (l-Arg) against Diclofenac (DIC)-induced gastro-duodenal damage in rats. Methods Rats were divided into Group A (control), Group B (DIC group) and Groups C–F which were pre-treated for five days with Gly1 (250 mg/kg), Gly2 (500 mg/kg), l-Arg1 (200 mg/kg) and l-Arg2 (400 mg/kg), respectively, before co-treatment with DIC for another three days. Hematological, biochemical and histopathological analyses were then carried out. Results DIC produced significant (p<0.05) reduction in PCV (13.82%), Hb (46.58%), RBC (30.53%), serum total protein (32.72%), albumin (28.44%) and globulin (38.01%) along with significant (p<0.05) elevation of serum MPO activity (83.30%), when compared with control. In addition, DIC increased gastric H2O2 and MDA levels by 33.93 and 48.59%, respectively, while the duodenal levels of the same parameters increased by 19.43 and 85.56%, respectively. Moreover, SOD, GPx and GST activities in the DIC group were significantly (p<0.05) reduced in the stomach (21.12, 24.35 and 51.28%, respectively) and duodenum (30.59, 16.35 and 37.90%, respectively), compared to control. Treatment with Gly and l-Arg resulted in significant amelioration of the DIC-induced alterations although l-Arg produced better amelioration of RBC (29.78%), total protein (10.12%), albumin (9.93%) and MPO (65.01%), compared to the DIC group. The protective effects of both amino acids against oxidative stress parameters and histological lesions were largely similar. Conclusions The data from this study suggest that Gly or l-Arg prevented DIC-induced gastro-duodenal toxicity and might, therefore be useful in improving the therapeutic index of DIC.


2013 ◽  
Vol 64 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Solomon Habtemariam ◽  
Antoni Sureda ◽  
Akbar Hajizadeh Moghaddam ◽  
Maria Daglia ◽  
...  

Abstract Gallic acid has been identified as an antioxidant component of the edible and medicinal plant Peltiphyllum peltatum. The present study examined its potential protective role against sodium fluoride (NaF)-induced oxidative stress in rat erythrocytes. Oxidative stress was induced by NaF administration through drinking water (1030.675 mg m-3 for one week). Gallic acid at 10 mg kg-1 and 20 mg kg-1 and vitamin C for positive controls (10 mg kg-1) were administered daily intraperitoneally for one week prior to NaF administration. Thiobarbituric acid reactive substances, antioxidant enzyme activities (superoxide dismutase and catalase), and the level of reduced glutathione were evaluated in rat erythrocytes. Lipid peroxidation in NaF-exposed rats significantly increased (by 88.8 %) when compared to the control group (p<0.05). Pre-treatment with gallic acid suppressed lipid peroxidation in erythrocytes in a dose-dependent manner. Catalase and superoxide dismutase enzyme activities and glutathione levels were reduced by NaF intoxication by 54.4 %, 63.69 %, and 42 % (p<0.001; vs. untreated control group), respectively. Pre-treatment with gallic acid or vitamin C significantly attenuated the deleterious effects. Gallic acid isolated from Peltiphyllum peltatum and vitamin C mitigated the NaF-induced oxidative stress in rat erythrocytes.


2021 ◽  
Vol 38 (3) ◽  
pp. 337-343
Author(s):  
Tuncay Eksen ◽  
Serpil Mişe Yonar

In the present study, it was investigated the effects of various levels of dietary ellagic acid on growth performance and antioxidant status in scaly carp (Cyprinus carpio). Fish were fed with the control diet and three different experimental diets containing three graded levels of ellagic acid (50, 100 and 200 mg kg-1 diet) for 60 days. On 30th and 60th days of experiment, the growth performance [live weight gain, relative growth and specific growth rate] and oxidant/antioxidant parameters [malondialdehyde level, catalase and glutathione-S-transferase activities and reduced glutathione level] were analysed. There was no statistically significant difference in the live weight gain, relative growth and specific growth rates of the control and ellagic acid treated groups (p > 0.05). When compared to the control group, the liver and kidney malondialdehyde levels of ellagic acid treated groups were significantly decreased (p < 0.05). The liver and kidney catalase and glutathione-S-transferase activities and reduced glutathione levels of ellagic acid treated groups were significantly increased when compared to the control group (p < 0.05). It was concluded that ellagic acid can be used as an antioxidant in fish.


Biomedicine ◽  
2020 ◽  
Vol 39 (2) ◽  
pp. 333-338
Author(s):  
Kalaivani Manokaran ◽  
Vasanthalaxmi Krishnananda Rao ◽  
Nilima . ◽  
Manjula Shimoga Durgoji Rao ◽  
Sucheta Prasanna Kumar

Introduction and Aim: Oxidative stress plays a very important role in endosulfan-induced toxic effects on reproductive organs. Vitamin C is a potent antioxidant which plays an important role in decreasing oxidative stress. The present study was aimed to investigate the protective role of vitamin C against endosulfan-induced testicular toxicity in Wistar rats. To investigate a protective effect of vitamin C against endosulfan induced toxicity on biochemical changes. Materials and Methods: Seventy male neonatal Wistar rats were divided into  seven groups. The group  I was taken as the control group, the endosulfan-treated were grouped into II (3 mg/kg body weight (BW) and group III (6 mg/kg BW), Group IV (9 mg/kg BW) and Group V (12 mg/kg BW). Group VI (9 mg/kg BW) and group VII (12 mg/kg BW) were pretreated with vitamin C (20 mg/kg BW) for 60 days. After  the experimental procedures, the testicular weight, lactate dehydrogenase (LDH) enzyme and testosterone in plasma, LDH, steroidogenic enzymes 3?-HSD and 17?-HSD in testis were evaluated. One-way ANOVA was used to determine the statistical significance. Results: Significant improvement in the testicular weight (P<0.05) , LDH (P<0.05) levels both in plasma and testis, increase in testosterone(P<0.001) and steroidogenic enzyme levels(P<0.001) was observed in the group pretreated with vitamin C treated group when compared to the endosulfan treated group. Conclusion: Vitamin C decreases the toxic effect of endosulfan on testis. The present action might be  due to its antioxidative properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jiahuan Tong ◽  
Zhisong Wu ◽  
Yuchen Wang ◽  
Qingxun Hao ◽  
Haoge Liu ◽  
...  

Objective. The study aims to research the interventional effect and mechanism of astragaloside IV (Ast) synergizing with ferulic acid (FA) on idiopathic pulmonary fibrosis (IPF) induced by bleomycin in mice. Methods. The mice were randomly divided into seven groups with 10 mice in each group, namely, a sham operation group, a model group, a miRNA-29b (miR-29) group, a miR-29b negative control group (NC group), a FA group, an Ast group, and a combination group. A mouse model of pulmonary fibrosis was established by intratracheal instillation of bleomycin. Samples were collected after 28 days of continuous administration. Hematoxylin and eosin (HE) and Masson staining were used to observe pathological changes in the lung tissue, and the degree of fibrosis was evaluated using the hydroxyproline content. Changes in transforming growth factor-β1 (TGF-β1) and Smad3 in the lung were observed using immunohistochemistry. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) in the serum. PCR was used to detect the expression of the miR-29b, TGF-β1, Smad3, and nuclear factor E2-related factor 2 (Nrf2) genes. Western blotting was used to detect the content of the TGF-β/Smad3 protein. Results. Ferulic acid combined with astragaloside IV reduced the degree of pulmonary fibrosis and the synthesis of hydroxyproline in lung tissue. The combination of the two also regulated the oxidative stress response , TGF-β1/Smad3 pathway and miR-29b in lung tissue. Conclusion. Astragaloside IV combined with ferulic acid regulated the oxidative stress of lung tissues and TGF-β1/Smad3 signaling through miR-29b, thereby reducing the degree of pulmonary fibrosis. This provides a reference direction for the clinical treatment of IPF patients.


Sign in / Sign up

Export Citation Format

Share Document