scholarly journals Optimizing the Timeframe to Produce Polychaetes (Hediste diversicolor) Enriched With Essential Fatty Acids Under Different Combinations of Temperature and Salinity

2021 ◽  
Vol 8 ◽  
Author(s):  
Daniel Jerónimo ◽  
Ana Isabel Lillebø ◽  
Felisa Rey ◽  
Henrique Koga Ii ◽  
M. Rosário M. Domingues ◽  
...  

Polychaetes can be successfully employed to recover essential fatty acids (EFA) from wasted uneaten aquafeeds present in aquaculture effluents. The optimization of the timeframe required to produce premium ragworms (Hediste diversicolor) biomass rich in EFA is paramount to make available to the aquafeeds industry another alternative ingredient to fish meal and fish oil. The present study aimed to evaluate the potential enrichment of ragworms fatty acid (FA) profile when fed a commercial aquafeed during 10, 20, and 40 days (D10, D20, and D40) under different combinations of water temperature (20 and 25°C) and salinity (15, 20, and 25). Total FA incremented progressively overtime, with D40 polychaetes exhibiting average values ranging between 70 and 90 μg mg–1 DW. The average values of n-6 FA ranged between 13 and 17 μg mg–1 DW, while that of n-3 FA varied between 17 and 19 μg mg–1 DW at D40. No significant differences were found in the FA profile of H. diversicolor cultured under different combinations of temperature and salinity. The FA profile of cultured polychaetes exhibited between 28 and 31% dissimilarity from that of wild conspecifics and displayed a higher content of two essential n-3 FA: eicosapentaenoic (20:5 n-3, EPA) and docosahexaenoic acids (22:6 n-3, DHA) (values ranging between 9.6–11.2% and 4.3–5.0% of total FA, respectively). A higher similarity in FA profile was recorded between D40 polychaetes and aquafeed than with initially stocked or wild specimens. Palmitic (16:0), oleic (18:1 n-9), linoleic (18:2 n-6), eicosadienoic (20:2 n-6), EPA (20:5 n-3), and DHA (22:6 n-3) were the FA whose concentration exhibited the highest increment. Evidence of de novo FA biosynthesis was observed through the formation of some FA that were neither present in the initially stocked biomass, nor in the aquafeed supplied, such as 5,11-eicosadienoate (Δ5,1120:2), 7,13,16-docosatrienoate (Δ7,13,1622:3), dihomo-gamma-linolenic (20:3 n-6), eicosatrienoic (20:3 n-3) and eicosatetraenoic (20:4 n-3) acids. A plateau of total FA, n-6, and n-3 FA was not reached over the study period. Overall, the present study highlights the potential of H. diversicolor as an extractive species for integrated multi-trophic aquaculture (IMTA) applications.

2018 ◽  
Vol 21 (3) ◽  
pp. 549 ◽  
Author(s):  
Lorde Sembiring ◽  
Mirna Ilza ◽  
Andarini Diharmi

Catfish (Pangasius hypophthalmus) processing industry produces by products of abdoment fat containing unsaturated fatty acids, polyunsaturated fatty acids (PUFAs) which are the essential fatty acids needs to maintain health. Catfish belly fat can be processed into coarse fish oil through a purification process, with the addition of the adsorbent used, one of which is bentonite. This study was aimed to determine the<br />effect of bentonite application on the characteristics of refined catfish oil. Fish oil was extracted from belly fat then purified by adding bentonite adsorbent at a concentration of 1; 4 and 7%. The design used in this<br />study was a complete factorial of one factor. The parameters of analysis were the number of free fatty acids, peroxide value, anisidine, and totox. The results showed that bentonite had significant effect on free fatty<br />acid, peroxide, anisidine and totox values. The use of 7% bentonite decreased content of free fatty acid, peroxide value, anisidine, peroxide and totox from 1.72 to 0.85%, 5.18 to 0 meq/kg, 27.51 to 2.28 meq/kg,<br />and 37.88 to 2.28 meq/kg respectively.


1993 ◽  
Vol 71 (9) ◽  
pp. 707-712 ◽  
Author(s):  
John E. Van Aerde ◽  
M. T. Clandinin

It is uncertain whether preterm infants can synthesize C20 and C22 (ω−6) and (ω−3) fatty acids required for structural lipids. Dietary intake of CI8:2ω−6 and C18:3ω−3 in formulae lacking long-chain polyunsaturated fatty acids can result in reduced levels of C20 and C22 homologues in membrane phospholipids as compared with breast-fed infants. Supplementation of fish oil has been shown to alleviate this problem in part only, as synthesis and incorporation of arachidonic acid into membrane phospholipids is reduced. Presently, infant formulae do not contain C20 and C22 fatty acids. Feeding an experimental infant formula with a balance between C20 and C22 (ω−6) and (ω−3) fatty acids within the range of human milk results in plasma phospholipid levels of C20 and C22 long-chain polyunsaturated (ω−6) and (ω−3) fatty acids similar to those in breast-fed infants. On the basis of clinical studies and evolutionary data, an increase of the linolenic and a decrease of the linoleic acid content in infant formula are suggested. Balanced incorporation of both (ω−6) and (ω−3) long-chain polyunsaturated fatty acids seems advisable in view of the lack of knowledge concerning the neonate's ability to chain elongate and desaturate essential fatty acids. Recommendations for the essential fatty acid content of preterm infant formula are suggested.Key words: essential fatty acids, long-chain polyunsaturated fatty acids, infant formula, fish oil, desaturation.


1985 ◽  
Vol 65 (1) ◽  
pp. 175-184 ◽  
Author(s):  
N. K. SARKAR ◽  
J. K. G. KRAMER ◽  
J. I. ELLIOT ◽  
M. S. WOLYNETZ

Four Yorkshire piglets, from each of 18 litters, were randomly allotted within litters, to four treatment groups 12 h after birth. Group 1 (Control) continued to be suckled by sows; the remaining piglets were reared artificially on a semi-synthetic liquid diet containing either 25% soybean oil (SBO) (group 2) or 3% SBO plus 22% lactose (groups 3 and 4). At 7, 14 and 21 days of age, 24 pigs from six litters were killed. Piglets on the 25% SBO diet grew faster (P < 0.05) than those on the 3% SBO diet while the growth rate of the suckled piglets tended to be between the growth rates of those on the two SBO diets. Body fat content increased with the fat content in the diet and with age. The protein:fat ratio was greatest in the piglets on the 3% SBO diet and least in the suckled piglets. The fatty acid composition of backfat changed, primarily during the first week of life, towards that of the dietary fat. This was evident even in piglets on the low fat-high carbohydrate (3% SBO) diet. The composition of the fat deposited in piglets on the 3% SBO group indicated preferential utilization of essential fatty acids and little de novo synthesis of fatty acids. The amount and type of fat deposited by piglets fed the 3% SBO diet, together with preliminary evidence of low incorporation of radioactivity from (U14C) glucose with adipose tissue fatty acids in vivo, suggest that the de novo fatty acid biosynthesis in adipose tissue of piglets is not as high as previously reported (Mersmann et al. 1973). Key words: Neonatal pigs, fat deposition, fatty acid biosynthesis.


2009 ◽  
Vol 2009 ◽  
pp. 202-202
Author(s):  
C Rymer ◽  
D I Givens

Enriching chicken meat with long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) is a viable means of increasing population intakes (minimum recommended 450 mg/d, SACN, 2004) of these essential fatty acids. Feeding broilers fish oil to achieve this causes problems with taint in the meat, whereas feeding an oil rich in C18:3 n-3 (LNA) does not result in the deposition of LC n-3 PUFA (Rymer and Givens, 2006). Stearidonic acid (C18:4n-3) is further down the conversion pathway of LNA to LC n-3 PUFA and appears to be converted much more efficiently by humans to LC n-3 PUFA than LNA (James et al., 2003). Feeding birds an oil rich in C18:4n-3 may therefore result in more enrichment of poultry meat with n-3 PUFA other than LNA, without the taint associated with feeding fish oil. The objective of this experiment was to determine what the effects on meat fatty acid composition and sensory characteristics were when broilers were fed an oil (SDA) derived from soyabean genetically modified to produce high concentrations of C18:4 n-3.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


2017 ◽  
Vol 10 (1) ◽  
pp. 92-99 ◽  
Author(s):  
Hércules Rezende Freitas

Polyunsaturated fatty acids (PUFAs) comprise about 35-40% of the total lipid content from green algaeChlorella, reaching up to 24% linoleic acid and 27% α-linolenic acid inC. vulgaris. Also, microalgae nutrient composition may be modulated by changes in the culture medium, increasing fatty acid and microelement concentrations in the algae biomass. PUFAs, such as α-linolenic (n-3) and linoleic (n-6) acids, as well as its derivatives, are considered essential for dietary consumption, and their ability to regulate body chemistry has been recently explored in depth. A balanced fatty acid consumption is shown to counteract the negative effects of western diets, such as chronic inflammation and glucose intolerance. In this brief commentary, technological and practical uses ofC. vulgarisare explored as means to improve dietary quality and, ultimately, human health.


1995 ◽  
Vol 269 (2) ◽  
pp. E247-E252 ◽  
Author(s):  
H. O. Ajie ◽  
M. J. Connor ◽  
W. N. Lee ◽  
S. Bassilian ◽  
E. A. Bergner ◽  
...  

To determine the contributions of preexisting fatty acid, de novo synthesis, and chain elongation in long-chain fatty acid (LCFA) synthesis, the synthesis of LCFAs, palmitate (16:0), stearate (18:0), arachidate (20:0), behenate (22:0), and lignocerate (24:0), in the epidermis, liver, and spinal cord was determined using deuterated water and mass isotopomer distribution analysis in hairless mice and Sprague-Dawley rats. Animals were given 4% deuterated water for 5 days or 8 wk in their drinking water. Blood was withdrawn at the end of these times for the determination of deuterium enrichment, and the animals were killed to isolate the various tissues for lipid extraction for the determination of the mass isotopomer distributions. The mass isotopomer distributions in LCFA were incompatible with synthesis from a single pool of primer. The synthesis of palmitate, stearate, arachidate, behenate, and lignocerate followed the expected biochemical pathways for the synthesis of LCFAs. On average, three deuterium atoms were incorporated for every addition of an acetyl unit. The isotopomer distribution resulting from chain elongation and de novo synthesis can be described by the linear combination of two binomial distributions. The proportions of preexisting, chain elongation, and de novo-synthesized fatty acids as a percentage of the total fatty acids were determined using multiple linear regression analysis. Fractional synthesis was found to vary, depending on the tissue type and the fatty acid, from 47 to 87%. A substantial fraction (24-40%) of the newly synthesized molecules was derived from chain elongation of unlabeled (recycled) palmitate.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 319-319
Author(s):  
Carrie James ◽  
Sandra L Rodriguez-Zas ◽  
Maria R C de Godoy

Abstract There is evidence that algae can be a sustainable alternative of omega-3 polyunsaturated fatty acids (w-3 PUFA; DHA and EPA) in the diets of felines, but more information is needed to determine bioavailability of algal w-3 PUFAs in felines. Therefore, the objective of this study was to determine the effects of dietary supplementation of algae DHA on plasma and red blood cell (RBC) membrane fatty acid profiles and fecal microbiota of adult cats. A complete randomized design was utilized with thirty female and male adult cats (mean age: 1.8 ± 0.03 yr, mean BW: 4.5 ± 0.8 kg) which were fed an assigned diet for 90 d. Three diets were formulated with poultry fat alone or inclusion of 2% fish oil or 2% algae DHA meal. Blood samples were collected after fasting on 0, 30, 60 and 90 d to be analyzed for plasma and red blood cell fatty acid profiles. A fresh fecal sample was collected within 15 min of defecation from each cat to be analyzed for fecal microbiota. Illumina 16S rRNA sequencing from V4 region was completed using MiSeq and analyzed using QIIME 2. Plasma and RBC fatty acid concentrations at baseline were similar among all cats and treatment groups. However, dietary treatment had a significant effect on the concentrations of several fatty acids in plasma and RBC over time. Plasma and RBC concentrations of DHA were greater (P &lt; 0.05) for cats fed the algal DHA diet compared to the control and fish oil diets. Conversely, plasma and RBC concentrations of EPA did not differ among treatments when analyzed as a change from baseline. Beta- and alpha-diversity did not differ among treatments, indicating that 2% fish oil or algal-DHA meal does alter fecal microbiota of cats in contrast with cats fed a poultry fat-based diet.


Sign in / Sign up

Export Citation Format

Share Document