scholarly journals Lipid Alterations in Systemic Sclerosis

2021 ◽  
Vol 8 ◽  
Author(s):  
Zuzanna Gogulska ◽  
Zaneta Smolenska ◽  
Jacek Turyn ◽  
Adriana Mika ◽  
Zbigniew Zdrojewski

Background: Systemic sclerosis (SSc) is an autoimmune disease with an elusive etiology and poor prognosis. Due to its diverse clinical presentation, a personalized approach is obligatory and needs to be based on a comprehensive biomarker panel. Therefore, particular metabolomic studies are necessary. Lipidomics addressed these issues and found disturbances in several crucial metabolic pathways.Aim of Review: The review aims to briefly summarize current knowledge related to lipid alterations in systemic sclerosis, highlight its importance, and encourage further research in this field.Key Scientific Concepts of Review: In this review, we summarized the studies on the lipidomic pattern, fatty acids, lipoproteins, cholesterol, eicosanoids, prostaglandins, leukotrienes, lysophospholipids, and sphingolipids in systemic sclerosis. Researchers demonstrated several alternate aspects of lipid metabolism. As we aimed to present our findings in a comprehensive view, we decided to divide our findings into three major groups: “serum lipoproteins,” “fatty acids and derivatives,” and “cellular membrane components,” as we do believe they play a prominent role in SSc pathology.

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 184
Author(s):  
Ji-Yoon Lee ◽  
Won Kon Kim ◽  
Kwang-Hee Bae ◽  
Sang Chul Lee ◽  
Eun-Woo Lee

Ferroptosis is a type of iron-dependent regulated necrosis induced by lipid peroxidation that occurs in cellular membranes. Among the various lipids, polyunsaturated fatty acids (PUFAs) associated with several phospholipids, such as phosphatidylethanolamine (PE) and phosphatidylcholine (PC), are responsible for ferroptosis-inducing lipid peroxidation. Since the de novo synthesis of PUFAs is strongly restricted in mammals, cells take up essential fatty acids from the blood and lymph to produce a variety of PUFAs via PUFA biosynthesis pathways. Free PUFAs can be incorporated into the cellular membrane by several enzymes, such as ACLS4 and LPCAT3, and undergo lipid peroxidation through enzymatic and non-enzymatic mechanisms. These pathways are tightly regulated by various metabolic and signaling pathways. In this review, we summarize our current knowledge of how various lipid metabolic pathways are associated with lipid peroxidation and ferroptosis. Our review will provide insight into treatment strategies for ferroptosis-related diseases.


2021 ◽  
Vol 10 (13) ◽  
pp. 2776
Author(s):  
Miren Altuna ◽  
Sandra Giménez ◽  
Juan Fortea

Individuals with Down syndrome (DS) have an increased risk for epilepsy during the whole lifespan, but especially after age 40 years. The increase in the number of individuals with DS living into late middle age due to improved health care is resulting in an increase in epilepsy prevalence in this population. However, these epileptic seizures are probably underdiagnosed and inadequately treated. This late onset epilepsy is linked to the development of symptomatic Alzheimer’s disease (AD), which is the main comorbidity in adults with DS with a cumulative incidence of more than 90% of adults by the seventh decade. More than 50% of patients with DS and AD dementia will most likely develop epilepsy, which in this context has a specific clinical presentation in the form of generalized myoclonic epilepsy. This epilepsy, named late onset myoclonic epilepsy (LOMEDS) affects the quality of life, might be associated with worse cognitive and functional outcomes in patients with AD dementia and has an impact on mortality. This review aims to summarize the current knowledge about the clinical and electrophysiological characteristics, diagnosis and treatment of epileptic seizures in the DS population, with a special emphasis on LOMEDS. Raised awareness and a better understanding of epilepsy in DS from families, caregivers and clinicians could enable earlier diagnoses and better treatments for individuals with DS.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Ahmed Alaarag ◽  
Timoor Hassan ◽  
Sameh Samir ◽  
Mohamed Naseem

Abstract Background Patients with established cardiovascular diseases have a poor prognosis when affected by the coronavirus disease 2019 (COVID-19). Also, the cardiovascular system, especially the heart, is affected by COVID-19. So we aimed to evaluate the angiographic and clinical characteristics of COVID-19 patients presented by ST-elevation myocardial infarction (STEMI). Results Our retrospective study showed that STEMI patients with COVID-19 had elevated inflammatory markers with mean of their CRP (89.69 ± 30.42 mg/dl) and increased laboratory parameters of thrombosis with mean D-dimer (660.15 ± 360.11 ng/ml). In 69.2% of patients, STEMI was the first clinical presentation and symptoms suggestive of COVID-19 developed during the hospital stay; about one third of patients had a non-obstructive CAD, while patients with total occlusion had a high thrombus burden. Conclusion STEMI may be the initial presentation of COVID-19. A non-obstructive CAD was found in about one third of patients; on the other hand, in patients who had a total occlusion of their culprit artery, the thrombus burden was high. Identification of the underlying mechanism responsible for the high thrombus burden in these patients is important as it may result in changes in their primary management strategy, either primary PCI, fibrinolytic therapy, or a pharmaco-invasive strategy. Furthermore, adjunctive anticoagulation and antiplatelet therapy may need to be revised.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1155
Author(s):  
Eva Garcia-Lopez ◽  
Paula Alcazar ◽  
Cristina Cid

Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Marine Remize ◽  
Yves Brunel ◽  
Joana L. Silva ◽  
Jean-Yves Berthon ◽  
Edith Filaire

N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 108
Author(s):  
Miroslav Pribyl ◽  
Zdenek Hodny ◽  
Iva Kubikova

Among the ~22,000 human genes, very few remain that have unknown functions. One such example is suprabasin (SBSN). Originally described as a component of the cornified envelope, the function of stratified epithelia-expressed SBSN is unknown. Both the lack of knowledge about the gene role under physiological conditions and the emerging link of SBSN to various human diseases, including cancer, attract research interest. The association of SBSN expression with poor prognosis of patients suffering from oesophageal carcinoma, glioblastoma multiforme, and myelodysplastic syndromes suggests that SBSN may play a role in human tumourigenesis. Three SBSN isoforms code for the secreted proteins with putative function as signalling molecules, yet with poorly described effects. In this first review about SBSN, we summarised the current knowledge accumulated since its original description, and we discuss the potential mechanisms and roles of SBSN in both physiology and pathology.


2021 ◽  
Vol 22 (6) ◽  
pp. 3245
Author(s):  
Luca X. Zampieri ◽  
Catarina Silva-Almeida ◽  
Justin D. Rondeau ◽  
Pierre Sonveaux

Depending on their tissue of origin, genetic and epigenetic marks and microenvironmental influences, cancer cells cover a broad range of metabolic activities that fluctuate over time and space. At the core of most metabolic pathways, mitochondria are essential organelles that participate in energy and biomass production, act as metabolic sensors, control cancer cell death, and initiate signaling pathways related to cancer cell migration, invasion, metastasis and resistance to treatments. While some mitochondrial modifications provide aggressive advantages to cancer cells, others are detrimental. This comprehensive review summarizes the current knowledge about mitochondrial transfers that can occur between cancer and nonmalignant cells. Among different mechanisms comprising gap junctions and cell-cell fusion, tunneling nanotubes are increasingly recognized as a main intercellular platform for unidirectional and bidirectional mitochondrial exchanges. Understanding their structure and functionality is an important task expected to generate new anticancer approaches aimed at interfering with gains of functions (e.g., cancer cell proliferation, migration, invasion, metastasis and chemoresistance) or damaged mitochondria elimination associated with mitochondrial transfer.


2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Liang Cui ◽  
Jue Hou ◽  
Jinling Fang ◽  
Yie Hou Lee ◽  
Vivian Vasconcelos Costa ◽  
...  

ABSTRACT Dengue is an acute febrile illness caused by dengue virus (DENV) and a major cause of morbidity and mortality in tropical and subtropical regions of the world. The lack of an appropriate small-animal model of dengue infection has greatly hindered the study of dengue pathogenesis and the development of therapeutics. In this study, we conducted mass spectrometry-based serum metabolic profiling from a model using humanized mice (humice) with DENV serotype 2 infection at 0, 3, 7, 14, and 28 days postinfection (dpi). Forty-eight differential metabolites were identified, including fatty acids, purines and pyrimidines, acylcarnitines, acylglycines, phospholipids, sphingolipids, amino acids and derivatives, free fatty acids, and bile acid. These metabolites showed a reversible-change trend—most were significantly perturbed at 3 or 7 dpi and returned to control levels at 14 or 28 dpi, indicating that the metabolites might serve as prognostic markers of the disease in humice. The major perturbed metabolic pathways included purine and pyrimidine metabolism, fatty acid β-oxidation, phospholipid catabolism, arachidonic acid and linoleic acid metabolism, sphingolipid metabolism, tryptophan metabolism, phenylalanine metabolism, lysine biosynthesis and degradation, and bile acid biosynthesis. Most of these disturbed pathways are similar to our previous metabolomics findings in a longitudinal cohort of adult human dengue patients across different infection stages. Our analyses revealed the commonalities of host responses to DENV infection between humice and humans and suggested that humice could be a useful small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics. IMPORTANCE Dengue virus is the most widespread arbovirus, causing an estimated 390 million dengue infections worldwide every year. There is currently no effective treatment for the disease, and the lack of an appropriate small-animal model of dengue infection has greatly increased the challenges in the study of dengue pathogenesis and the development of therapeutics. Metabolomics provides global views of small-molecule metabolites and is a useful tool for finding metabolic pathways related to disease processes. Here, we conducted a serum metabolomics study on a model using humanized mice with dengue infection that had significant levels of human platelets, monocytes/macrophages, and hepatocytes. Forty-eight differential metabolites were identified, and the underlying perturbed metabolic pathways are quite similar to the pathways found to be altered in dengue patients in previous metabolomics studies, indicating that humanized mice could be a highly relevant small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics.


2021 ◽  
Vol 10 (15) ◽  
pp. 3230
Author(s):  
Jun Nishio ◽  
Shizuhide Nakayama ◽  
Kazuki Nabeshima ◽  
Takuaki Yamamoto

Dedifferentiated liposarcoma (DDL) is defined as the transition from well-differentiated liposarcoma (WDL)/atypical lipomatous tumor (ALT) to non-lipogenic sarcoma, which arises mostly in the retroperitoneum and deep soft tissue of proximal extremities. It is characterized by a supernumerary ring and giant marker chromosomes, both of which contain amplified sequences of 12q13-15 including murinedouble minute 2 (MDM2) and cyclin-dependent kinase 4 (CDK4) cell cycle oncogenes. Detection of MDM2 (and/or CDK4) amplification serves to distinguish DDL from other undifferentiated sarcomas. Recently, CTDSP1/2-DNM3OS fusion genes have been identified in a subset of DDL. However, the genetic events associated with dedifferentiation of WDL/ALT remain to be clarified. The standard treatment for localized DDL is surgery, with or without radiotherapy. In advanced disease, the standard first-line therapy is an anthracycline-based regimen, with either single-agent anthracycline or anthracycline in combination with the alkylating agent ifosfamide. Unfortunately, this regimen has not necessarily led to a satisfactory clinical outcome. Recent advances in the understanding of the pathogenesis of DDL may allow for the development of more-effective innovative therapeutic strategies. This review provides an overview of the current knowledge on the clinical presentation, pathogenesis, histopathology and treatment of DDL.


Sign in / Sign up

Export Citation Format

Share Document