scholarly journals Optimization of γ-Aminobutyric Acid (GABA) Accumulation in Germinating Adzuki Beans (Vigna angularis) by Vacuum Treatment and Monosodium Glutamate, and the Molecular Mechanisms

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiujie Jiang ◽  
Qingpeng Xu ◽  
Aiwu Zhang ◽  
Yong Liu ◽  
Liqin Zhao ◽  
...  

This study aimed to investigate the optimal hypoxic and monosodium glutamate (MSG) stress conditions for the enrichment of γ-Aminobutyric acid (GABA) in germinating adzuki beans and to reveal the potential underlying molecular mechanisms of GABA accumulation. Using single-factor experiments and response surface model, we investigated the effects of germination time, germination temperature, vacuum time, and MSG concentration on GABA contents, and further explored the activity and gene expression of glutamate decarboxylase (GAD) and polyamine oxidase (PAO) critical rate restriction enzymes during GABA synthesis. The optimal soaking temperature, soaking time, and pH conditions were 35°C, 16 h, and 5, respectively. Furthermore, the optimal germination conditions for optimal GABA enrichment were 48 h, 1.99 mg/ml MSG concentration, germination temperature of 31.49°C, and vacuum time of 15.83 h. Under such conditions, the predicted GABA concentration was 443.57 ± 7.18 mg/100 g, with no significant difference between the predicted and experimental data. The vacuum + MSG (FZM) treatment has a maximum contribution rate of GABA to 38.29%, which significantly increase GABA content, and the increase was associated with increased GAD and PAO activity. In addition, MSG in combination with vacuum treatment could significantly induce VaGAD4 and VaGAD6 genes in 2 days germination of adzuki beans. According to the results of the present study, vacuum + MSG treatment is an effective approach to enhancing GABA accumulation in germinating adzuki beans, which could be employed in enhancing the functional quality of germinating adzuki beans.

Author(s):  
Andrea Maugeri ◽  
Martina Barchitta ◽  
Roberta Magnano San Lio ◽  
Maria Clara La Rosa ◽  
Claudia La Mastra ◽  
...  

Several studies—albeit with still inconclusive and limited findings—began to focus on the effect of drinking alcohol on telomere length (TL). Here, we present results from a systematic review of these epidemiological studies to investigate the potential association between alcohol consumption, alcohol-related disorders, and TL. The analysis of fourteen studies—selected from PubMed, Medline, and Web of Science databases—showed that people with alcohol-related disorders exhibited shorter TL, but also that alcohol consumption per se did not appear to affect TL in the absence of alcohol abuse or dependence. Our work also revealed a lack of studies in the periconceptional period, raising the need for evaluating this potential relationship during pregnancy. To fill this gap, we conducted a pilot study using data and samples form the Mamma & Bambino cohort. We compared five non-smoking but drinking women with ten non-smoking and non-drinking women, matched for maternal age, gestational age at recruitment, pregestational body mass index, and fetal sex. Interestingly, we detected a significant difference when analyzing relative TL of leukocyte DNA of cord blood samples from newborns. In particular, newborns from drinking women exhibited shorter relative TL than those born from non-drinking women (p = 0.024). Although these findings appeared promising, further research should be encouraged to test any dose–response relationship, to adjust for the effect of other exposures, and to understand the molecular mechanisms involved.


2021 ◽  
Vol 174 ◽  
pp. 111446
Author(s):  
Zongyu Chi ◽  
Yuqin Dai ◽  
Shifeng Cao ◽  
Yingying Wei ◽  
Xingfeng Shao ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
Simei Tu ◽  
Hao Zhang ◽  
Xiaocheng Yang ◽  
Wen Wen ◽  
Kangjing Song ◽  
...  

BACKGROUND: Since the molecular mechanisms of cervical cancer (CC) have not been completely discovered, it is of great significance to identify the hub genes and pathways of this disease to reveal the molecular mechanisms of cervical cancer. OBJECTIVE: The study aimed to identify the biological functions and prognostic value of hub genes in cervical cancer. METHODS: The gene expression data of CC patients were downloaded from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database. The core genes were screened out by differential gene expression analysis and weighted gene co-expression network analysis (WGCNA). R software, the STRING online tool and Cytoscape software were used to screen out the hub genes. The GEPIA public database was used to further verify the expression levels of the hub genes in normal tissues and tumour tissues and determine the disease-free survival (DFS) rates of the hub genes. The protein expression of the survival-related hub genes was identified with the Human Protein Atlas (HPA) database. RESULTS: A total of 64 core genes were screened, and 10 genes, including RFC5, POLE3, RAD51, RMI1, PALB2, HDAC1, MCM4, ESR1, FOS and E2F1, were identified as hub genes. Compared with that in normal tissues, RFC5, POLE3, RAD51,RMI1, PALB2, MCM4 and E2F1 were all significantly upregulated in cervical cancer, ESR1 was significantly downregulated in cervical cancer, and high RFC5 expression in CC patients was significantly related to OS. In the DFS analysis, no significant difference was observed in the expression level of RFC5 in cervical cancer patients. Finally, RFC5 protein levels verified by the HPA database were consistently upregulated with mRNA levels in CC samples. CONCLUSIONS: RFC5 may play important roles in the occurrence and prognosis of CC. It could be further explored and validated as a potential predictor and therapeutic target for CC.


1979 ◽  
Vol 57 (7) ◽  
pp. 688-694 ◽  
Author(s):  
A. K. Singh ◽  
E. W. Banister

Adrenalectomized rats exposed to high pressure oxygen (OHP) until convulsion convulse much later than sham-operated or normal rats. No significant changes in the concentration of noradrenaline (NA) and total catecholamines (TC) in the brain were noted in sham-operated or adrenalectomized rats resulting from sham or real surgery and no change occurred in these variables in normal sham-operated or adrenalectomized animals after OHP leading to convulsion. Brain adrenaline (A) concentration, however, decreased significantly in all three groups following OHP-induced convulsions. Activity of catecholamine O-methyltransferase (COMT) decreased significantly only in adrenalectomized rats. Brain γ-aminobutyric acid (GABA), glutamate, and other amino acid level remained unchanged after adrenalectomy whereas the concentration of ammonia decreased significantly when normal rats were adrenalectomized. After OHP-induced convulsions, the concentrations of brain GABA and glutamate decreased and ammonia and glutamine plus asparagine increased significantly in normal, sham-operated, and adrenalectomized rats. In the blood no significant difference was noted in the concentration of the catecholamines, ammonia, and amino acids either in normal or sham-operated rats. In adrenalectomized rats, the blood A and NA concentrations decreased significantly and tyrosine increased significantly. The concentration of NA, ammonia, and glutamine plus asparagine in rats from all three groups increased after OHP-induced convulsions, whereas the concentration of glutamate decreased significantly. Since the concentration of A increased significantly after convulsions in normal and sham-operated rats but did not change in adrenalectomized rats, it might be proposed that adrenalectomy protects against OHP-induced convulsions by reducing the circulating concentration of A and ammonia.However, these are not the only factors involved in the protection since the sham-operated rats also convulsed much later than normal rats but had similar ammonia and A concentrations to normal animals.


1992 ◽  
Vol 77 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Michael M. Haglund ◽  
Mitchel S. Berger ◽  
Dennis D. Kunkel ◽  
JoAnn E. Franck ◽  
Saadi Ghatan ◽  
...  

✓ The role of specific neuronal populations in epileptic foci was studied by comparing epileptic and nonepileptic cortex removed from patients with low-grade gliomas. Epileptic and nearby (within 1 to 2 cm) nonepileptic temporal lobe neocortex was identified using electrocorticography. Cortical specimens taken from four patients identified as epileptic and nonepileptic were all void of tumor infiltration. Somatostatin- and γ-aminobutyric acid (GABAergic)-immunoreactive neurons were identified and counted. Although there was no significant difference in the overall cell count, the authors found a significant decrease in both somatostatin- and GABAergic-immunoreactive neurons (74% and 51 %, respectively) in the epileptic cortex compared to that in nonepileptic cortex from the same patient. It is suggested that these findings demonstrate changes in neuronal subpopulations that may account for the onset and propagation of epileptiform activity in patients with low-grade gliomas.


Author(s):  
Marcel Patindoilba Sawadogo ◽  
Adama Zida ◽  
Issiaka Soulama ◽  
Samuel S Sermé ◽  
Thierry Kiswendsida Guiguemdé ◽  
...  

The aim of this study is to have an idea on the molecular mechanisms of C. albicans resistance to fluconazole in Burkina Faso, by studying the polymorphism of the ERG11 gene, and its implication in the C. albicans virulence and resistance in vivo according to the Galleria mellonella model; (2) Methods: Ten (10) clinical strains including, 5 resistant and 5 susceptible and 1 virulent and susceptible reference strain SC5314 are used. For the estimation of virulence, the larvae were inoculated with 10 μL of C. albicans cell suspension at variable concentrations: 2,5.105, 5.105, 1.106, and 5.106 CFU/larva of each strain. For the in vivo efficacy study, fluconazole was administered at 1, 4 and 16 mg/kg respectively to G. mellonella larvae, after infection by inoculum 5.106 CFU / larvae of each strain; (3) Results: Six (6) non-silent mutations in the ERG11 gene (K143R, F145L, G307S, S405F, G448E, V456I on ERG11p) were found in 4 resistant isolates. Larval mortality depended on fungal burden and strain. The inoculum 5.106 CFU caused 100% mortality in 2 days for the 2 CAAL-1 and CAAL-2 strains carrying the F145L mutation, in 3 days for the reference strain SC5314, in 4 days for the ensemble of resistant strains, and in 5 days for the ensemble of susceptible strains. The comparison of the mortality due to the reference strain SC5314 CFU / larva and the average mortality due to the two mutant F145L strains, shows a significant difference (P <0.05).Fluconazole significantly protected (P> 0.05) the larvae from infection by susceptible strains and the reference strain. However, 100% mortality in 6 days after injection of the resistant strains, was observed (4) Conclusions: Certain mutations in the ERG11 gene such as the F145L mutation are thought to be a source of increased virulence in Candida albicans. Fluconazole effectively protected larvae from infection by susceptible strains in vivo, unlike resistant strain


2020 ◽  
Author(s):  
Praveenkumar Devarbhavi ◽  
Basavaraj Vastrad ◽  
Anandkumar Tengli ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

AbstractNeuroendocrine tumor (NET) is one of malignant cancer and is identified with high morbidity and mortality rates around the world. With indigent clinical outcomes, potential biomarkers for diagnosis, prognosis and drug target are crucial to explore. The aim of this study is to examine the gene expression module of NET and to identify potential diagnostic and prognostic biomarkers as well as to find out new drug target. The differentially expressed genes (DEGs) identified from GSE65286 dataset was used for pathway enrichment analyses and gene ontology (GO) enrichment analyses and protein - protein interaction (PPI) analysis and module analysis. Moreover, miRNAs and transcription factors (TFs) that regulated the up and down regulated genes were predicted. Furthermore, validation of hub genes was performed. Finally, molecular docking studies were performed. DEGs were identified, including 453 down regulated and 459 up regulated genes. Pathway and GO enrichment analysis revealed that DEGs were enriched in sucrose degradation, creatine biosynthesis, anion transport and modulation of chemical synaptic transmission. Important hub genes and target genes were identified through PPI network, modules, target gene - miRNA network and target gene - TF network. Finally, survival analyses, receiver operating characteristic (ROC) curve and RT-PCR validated the significant difference of ATP1A1, LGALS3, LDHA, SYK, VDR, OBSL1, KRT40, WWOX, NINL and PPP2R2B between metastatic NET and normal controls. In conclusion, the DEGs and hub genes with their regulatory elements identified in this study will help us understand the molecular mechanisms underlying NET and provide candidate targets for future research.


2005 ◽  
Vol 102 (5) ◽  
pp. 970-976 ◽  
Author(s):  
Laszlo Vutskits ◽  
Eduardo Gascon ◽  
Edomer Tassonyi ◽  
Jozsef Zoltan Kiss

Background Recent laboratory studies showed that exposure to supraclinical concentrations of propofol can induce cell death of immature neurons. However, no data are available regarding the effects of clinically relevant concentrations of this agent on neuronal development. The authors addressed this issue by evaluating the effect of propofol on dendritic growth and arbor expansion of developing gamma-aminobutyric acid-positive (GABAergic) interneurons. Methods Immature neuroblasts were isolated from the newborn rat subventricular zone and differentiated into GABAergic interneurons in culture. In addition to cell death, the effects of increasing concentrations and durations of propofol exposure on neuronal dendritic development were evaluated using the following morphologic parameters: total dendritic length, primary dendrites, branching point, and Scholl analysis. Results The authors demonstrate that propofol induced cell death of GABAergic neurons at concentrations of 50 microg/ml or greater. As little as 1 microg/ml propofol significantly altered several aspects of dendritic development, and as little as 4 h of exposure to this agent resulted in a persistent decrease in dendritic growth. In contrast, application of midazolam did not affect neuronal development. Conclusion Short-term exposure of immature developing GABAergic neurons to clinically relevant concentrations of propofol can induce long-term changes in dendritic arbor development. These results suggest that propofol anesthesia during central nervous system development could interfere with the molecular mechanisms driving the differentiation of GABAergic neurons and thus could potentially lead to impairment of neural networks.


2014 ◽  
Vol 121 (5) ◽  
pp. 990-998 ◽  
Author(s):  
Oluwaseun Akeju ◽  
M. Brandon Westover ◽  
Kara J. Pavone ◽  
Aaron L. Sampson ◽  
Katharine E. Hartnack ◽  
...  

Abstract Background: The neural mechanisms of anesthetic vapors have not been studied in depth. However, modeling and experimental studies on the intravenous anesthetic propofol indicate that potentiation of γ-aminobutyric acid receptors leads to a state of thalamocortical synchrony, observed as coherent frontal alpha oscillations, associated with unconsciousness. Sevoflurane, an ether derivative, also potentiates γ-aminobutyric acid receptors. However, in humans, sevoflurane-induced coherent frontal alpha oscillations have not been well detailed. Methods: To study the electroencephalogram dynamics induced by sevoflurane, the authors identified age- and sex-matched patients in which sevoflurane (n = 30) or propofol (n = 30) was used as the sole agent for maintenance of general anesthesia during routine surgery. The authors compared the electroencephalogram signatures of sevoflurane with that of propofol using time-varying spectral and coherence methods. Results: Sevoflurane general anesthesia is characterized by alpha oscillations with maximum power and coherence at approximately 10 Hz, (mean ± SD; peak power, 4.3 ± 3.5 dB; peak coherence, 0.73 ± 0.1). These alpha oscillations are similar to those observed during propofol general anesthesia, which also has maximum power and coherence at approximately 10 Hz (peak power, 2.1 ± 4.3 dB; peak coherence, 0.71 ± 0.1). However, sevoflurane also exhibited a distinct theta coherence signature (peak frequency, 4.9 ± 0.6 Hz; peak coherence, 0.58 ± 0.1). Slow oscillations were observed in both cases, with no significant difference in power or coherence. Conclusions: The study results indicate that sevoflurane, like propofol, induces coherent frontal alpha oscillations and slow oscillations in humans to sustain the anesthesia-induced unconscious state. These results suggest a shared molecular and systems-level mechanism for the unconscious state induced by these drugs.


Sign in / Sign up

Export Citation Format

Share Document