scholarly journals CXC Chemokines as Therapeutic Targets and Prognostic Biomarkers in Skin Cutaneous Melanoma Microenvironment

2021 ◽  
Vol 11 ◽  
Author(s):  
Xuezhi Zhou ◽  
Manjuan Peng ◽  
Ye He ◽  
Jingjie Peng ◽  
Xuan Zhang ◽  
...  

BackgroundSkin Cutaneous Melanoma (SKCM) is a tumor of the epidermal melanocytes induced by gene activation or mutation. It is the result of the interaction between genetic, constitutional, and environmental factors. SKCM is highly aggressive and is the most threatening skin tumor. The incidence of the disease is increasing year by year, and it is the main cause of death in skin tumors around the world. CXC chemokines in the tumor microenvironment can regulate the transport of immune cells and the activity of tumor cells, thus playing an anti-tumor immunological role and affecting the prognosis of patients. However, the expression level of CXC chemokine in SKCM and its effect on prognosis are still unclear.MethodOncomine, UALCAN, GEPIA, STRING, GeneMANIA, cBioPortal, TIMER, TRRUST, DAVID 6.8, and Metascape were applied in our research.ResultThe transcription of CXCL1, CXCL5, CXCL8, CXCL9, CXCL10, and CXCL13 in SKCM tissues were significantly higher than those in normal tissues. The pathological stage of SKCM patients is closely related to the expression of CXCL4, CXCL9, CXCL10, CXCL11, CXCL12, and CXCL13. The prognosis of SKCM patients with low transcription levels of CXCL4, CXCL9, CXCL10, CXCL11, and CXCL13 is better. The differential expression of CXC chemokines is mainly associated with inflammatory response, immune response, and cytokine mediated signaling pathways. Our data indicate that the key transcription factors of CXC chemokines are RELA, NF-κB1 and SP1. The targets of CXC chemokines are mainly LCK, LYN, SYK, MAPK2, MAPK12, and ART. The relationship between CXC chemokine expression and immune cell infiltration in SKCM was closed.ConclusionsOur research provides a basis for screening SKCM biomarkers, predicting prognosis, and choosing immunotherapy.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yang Yang ◽  
Wei He ◽  
Zi-rui Wang ◽  
Yu-jiao Wang ◽  
Lan-lan Li ◽  
...  

Background. The tumor-infiltrating immune cells are closely associated with the prognosis of gastric cancer (GC). This article is aimed at determining the composition change of immune cells and immune regulatory factors in GC and normal tissues, depicting their prognosis value in GC, and revealing the relationship between them and GC clinical parameters. Methods. We used CIBERSORT to calculate the proportion of 22 immune cells in the GC or normal tissues; a t -test was applied to assess the expression difference of immune cells and immune regulatory factors in normal and GC tissues. The relationship of the immune cells, immune regulatory factors, and GC patients’ clinical characteristics was assessed by univariate analysis. Results. In this study, we found that the proportion of macrophages increased, while plasma cells and monocytes decreased in GC tissues. In these immune fractions, Tregs and naïve B cells were found to be correlated with GC patients’ prognosis. Interestingly, the expression of immune regulatory factors was ambiguous with their classical function in GC tissues. For example, TIM-3, FOXP3, and CMTM6 were overexpressed, while CD27 and PD-1 were underexpressed in GC tissues. We also found that IDO1, PD-1, TIGIT, and TIM-3 were highly expressed in high-grade GC tissues, the HERC2 expression level was related to patients’ gender, and the TIGIT expression level was sensitive to targeted therapy. Furthermore, our results suggested that the infiltration of Tregs and naive B cells was strongly correlated with the T stage, radiation therapy, targeted molecular therapy, and the expression levels of TIM-3 and FOXP3 in GC. Conclusion. The expression pattern of tumor-infiltrating immune cells and immune regulatory factors was systematically depicted in the GC tumor microenvironment, indicating that individualized treatment based on the tumor-infiltrating immune cells and immune regulatory factors may be beneficial to GC patients.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3045
Author(s):  
Euiyoung Oh ◽  
Jun-Hyeong Kim ◽  
JungIn Um ◽  
Da-Woon Jung ◽  
Darren R. Williams ◽  
...  

The relationship between expression of aging-related genes in normal tissues and cancer patient survival has not been assessed. We developed a genome-wide transcriptomic analysis approach for normal tissues adjacent to the tumor to identify aging-related transcripts associated with survival outcome, and applied it to 12 cancer types. As a result, five aging-related genes (DUSP22, MAPK14, MAPKAPK3, STAT1, and VCP) in normal tissues were found to be significantly associated with a worse survival outcome in patients with renal cell carcinoma (RCC). This computational approach was investigated using nontumorigenic immune cells purified from young and aged mice. Aged immune cells showed upregulated expression of all five aging-related genes and promoted RCC invasion compared to young immune cells. Further studies revealed DUSP22 as a regulator and druggable target of metastasis. DUSP22 gene knockdown reduced RCC invasion and the small molecule inhibitor BML-260 prevented RCC dissemination in a tumor/immune cell xenograft model. Overall, these results demonstrate that deciphering the relationship between aging-related gene expression in normal tissues and cancer patient survival can provide new prognostic markers, regulators of tumorigenesis and novel targets for drug development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sha Wu ◽  
Xiao-Feng Li ◽  
Yuan-Yuan Wu ◽  
Su-Qin Yin ◽  
Cheng Huang ◽  
...  

Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is characterized by immune cell infiltration, fibroblast-like synovial cell hyperproliferation, and cartilage and bone destruction. To date, numerous studies have demonstrated that immune cells are one of the key targets for the treatment of RA. N6-methyladenosine (m6A) is the most common internal modification to eukaryotic mRNA, which is involved in the splicing, stability, export, and degradation of RNA metabolism. m6A methylated-related genes are divided into writers, erasers, and readers, and they are critical for the regulation of cell life. They play a significant role in various biological processes, such as virus replication and cell differentiation by controlling gene expression. Furthermore, a growing number of studies have indicated that m6A is associated with the occurrence of numerous diseases, such as lung cancer, bladder cancer, gastric cancer, acute myeloid leukemia, and hepatocellular carcinoma. In this review, we summarize the history of m6A research and recent progress on RA research concerning m6A enzymes. The relationship between m6A enzymes, immune cells, and RA suggests that m6A modification offers evidence for the pathogenesis of RA, which will help in the development of new therapies for RA.


2020 ◽  
Author(s):  
Siyuan Jiang ◽  
Lizhe Zhu ◽  
Chao Jiang ◽  
Shibo Yu ◽  
Bin Wang ◽  
...  

Abstract Background Synaptotagmins (SYTs) are a family of proteins whose primary function is serving as a calcium sensor in vesicle transport and exocytosis, playing an important role in the function of immune cells. There is also a close relationship between immune cells and tumours. SYT4 is one molecule involved in this relationship, but the relationship between SYT4 and cancer remains unclear. Therefore, we hypothesize that SYT4 can affect the prognosis of cancer, and may be related to immune cells. Methods The following databases were used to study the immunological and prognostic role of SYT4 in cancers: Oncomine, Kaplan-Meier plotter, The Human Protein Atlas, CCLE, GEPIA2, TIMER, and CGGA. Results SYT4 expressions were lower in many cancers than in normal tissues. Specifically in gastric cancer and lower-grade gliomas, SYT4 played a protective and harmful role, respectively. Moreover, a difference between SYT4 expression and the levels of immune infiltration existed in stomach adenocarcinoma (STAD) and brain lower-grade glioma (LGG). In addition, we found that the relationship between markers of monocytes, M1 and M2 macrophages, tumour-associated macrophages (TAMs), Treg cells, B lymphocytes, dendritic cells (DCs) and SYT4 expression was opposite in STAD and LGG. Conclusions The effect of SYT4 on the prognosis of patients with STAD and LGG was opposite. And SYT4 has different effects on immune infiltration in these two tumours. Therefore, SYT4 might be a potential prognostic and tumour immune-related biomarker in STAD and LGG.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Silu Meng ◽  
Xinran Fan ◽  
Jianwei Zhang ◽  
Ran An ◽  
Shuang Li

Gap Junction Protein Alpha 1 (GJA1) belongs to the gap junction family and has been widely studied in cancers. We evaluated the role of GJA1 in cervical cancer (CC) using public data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. The difference of GJA1 expression level between CC and normal tissues was analyzed by the Gene Expression Profiling Interactive Analysis (GEPIA), six GEO datasets, and the Human Protein Atlas (HPA). The relationship between clinicopathological features and GJA1 expression was analyzed by the chi-squared test and the logistic regression. Kaplan–Meier survival analysis and Cox proportional hazard regression analysis were used to assessing the effect of GJA1 expression on survival. Gene set enrichment analysis (GSEA) was used to screen the signaling pathways regulated by GJA1. Immune Cell Abundance Identifier (ImmuCellAI) was chosen to analyze the immune cells affected by GJA1. The expression of GJA1 in CC was significantly lower than that in normal tissues based on the GEPIA, GEO datasets, and HPA. Both the chi-squared test and the logistic regression showed that high-GJA1 expression was significantly correlated with keratinization, hormone use, tumor size, and FIGO stage. The Kaplan–Meier curves suggested that high-GJA1 expression could indicate poor prognosis ( p = 0.0058 ). Multivariate analysis showed that high-GJA1 expression was an independent predictor of poor overall survival (HR, 4.084; 95% CI, 1.354-12.320; p = 0.013 ). GSEA showed many cancer-related pathways, such as the p53 signaling pathway and the Wnt signaling pathway, were enriched in the high-GJA1-expression group. Immune cell abundance analysis revealed that the abundance of CD8 naive, DC, and neutrophil was significantly increased in the high-GJA1-expression group. In conclusion, GJA1 can be regarded as a potential prognostic marker of poor survival and therapeutic target in CC. Moreover, many cancer-related pathways may be the critical pathways regulated by GJA1. Furthermore, GJA1 can affect the abundance of immune cells.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yang Li ◽  
Jina Zheng ◽  
Chanjuan Gong ◽  
Kengfu Lan ◽  
Yuqing Shen ◽  
...  

Abstract Background Peri-implantitis is an inflammation that occurs around the implant, resulting in varying degrees of inflammatory damage to the soft and hard tissues. The characteristic criterion is the loss of the supporting bone in an inflammatory environment. However, the specific mechanisms and biomarkers involved in peri-implantitis remain to be further studied. Recently, competing endogenous RNAs (ceRNA) and immune microenvironment have been found to play a more important role in the inflammatory process. In our study, we analyzed the expression of immune related microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and message RNAs (mRNAs) in peri-implantitis by analyzing GSE33774 and GSE57631. Methods In this study, we explored the expression profile data of immune-related lncRNAs, miRNAs and mRNAs, and constructed immune-related ceRNA network involved in the pathogenesis of peri-implantitis. In addition, the CIBERSORT was used to evaluate the content of immune cells in normal tissues and peri-implantitis to detect the immune microenvironment of peri-implantitis. Results In the analysis, 14 DElncRNAs, 16 DEmiRNAs, and 18 DEmRNAs were used to establish an immune related ceRNA network and the immune infiltration patterns associated with peri-implantitis was discovered. Through the mutual verification of the two datasets, we found that GSK3B and miR-1297 may have important significance in the immune microenvironment and pathogenesis of peri-implantitis and GSK3B was closely related to four types of immune cells, especially with the highest correlation with resting mast cells (P = 0.0003). Conclusions Through immune-related ceRNA network, immune-related genes (IRGs) and immune cell infiltration can further comprehensively understand the pathogenesis of peri-implantitis, which built up an immunogenomic landscape with clinical significance for peri-implantitis.


2020 ◽  
Author(s):  
Yang Li ◽  
Ji Na Zheng ◽  
Chan Juan Gong ◽  
Keng Fu Lan ◽  
Yu Qing Shen ◽  
...  

Abstract Background: Peri-implantitis is an inflammation that occurs around the implant, resulting in varying degrees of inflammatory damage to the soft and hard tissues. The characteristic criterion is the loss of the supporting bone in an inflammatory environment. However, the specific mechanisms and biomarkers involved in peri-implantitis remain to be further studied. Recently, competing endogenous RNAs (ceRNA) and immune microenvironment have been found to play a more important role in the inflammatory process. In our study, we analyzed the expression of immune related microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and message RNAs (mRNAs) in peri-implantitis by analyzing GSE33774 and GSE57631.Methods: In this study, we explored the expression profile data of immune-related lncRNAs, miRNAs and mRNAs, and constructed immune-related ceRNA network involved in the pathogenesis of peri-implantitis. In addition, the CIBERSORT was used to evaluate the content of immune cells in normal tissues and peri-implantitis to detect the immune microenvironment of peri-implantitis.Results: In the analysis, 14 DElncRNAs, 16 DEmiRNAs, and 18 DEmRNAs were used to establish an immune related ceRNA network and the immune infiltration patterns associated with peri-implantitis was discovered. Through the mutual verification of the two datasets, we found that GSK3B and miR-1297 may have important significance in the immune microenvironment and pathogenesis of peri-implantitis and GSK3B was closely related to four types of immune cells, especially with the highest correlation with resting mast cells (P = 0.0003).Conclusions: Through immune-related ceRNA network, immune-related genes (IRGs) and immune cell infiltration can further comprehensively understand the pathogenesis of peri-implantitis, which built up an immunogenomic landscape with clinical significance for peri-implantitis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shaokun Wang ◽  
Li Pang ◽  
Zuolong Liu ◽  
Xiangwei Meng

Abstract Background The change of immune cell infiltration essentially influences the process of colorectal cancer development. The infiltration of immune cells can be regulated by a variety of genes. Thus, modeling the immune microenvironment of colorectal cancer by analyzing the genes involved can be more conducive to the in-depth understanding of carcinogenesis and the progression thereof. Methods In this study, the number of stromal and immune cells in malignant tumor tissues were first estimated by using expression data (ESTIMATE) and cell-type identification with relative subsets of known RNA transcripts (CIBERSORT) to calculate the proportion of infiltrating immune cell and stromal components of colon cancer samples from the Cancer Genome Atlas database. Then the relationship between the TMN Classification and prognosis of malignant tumors was evaluated. Results By investigating differentially expressed genes using COX regression and protein-protein interaction network (PPI), the candidate hub gene serine protease inhibitor family E member 1 (SERPINE1) was found to be associated with immune cell infiltration. Gene Set Enrichment Analysis (GSEA) further projected the potential pathways with elevated SERPINE1 expression to carcinogenesis and immunity. CIBERSORT was subsequently utilized to investigate the relationship between the expression differences of SERPINE1 and immune cell infiltration and to identify eight immune cells associated with SERPINE1 expression. Conclusion We found that SERPINE1 plays a role in the remodeling of the colon cancer microenvironment and the infiltration of immune cells.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Xiaodong Chen ◽  
Fen Tian ◽  
Peng Lun ◽  
Yugong Feng

Abstract Tumor-infiltrating immune cells play a decisive part in prognosis and survival. Until now, previous researches have not made clear about the diversity of cell types involved in the immune response. The objective of this work was to confirm the composition of tumor-infiltrating immune cells and their correlation with prognosis in meningiomas based on a metagene approach (known as CIBERSORT) and online databases. A total of 22 tumor-infiltrating immune cells were detected to determine the relationship between the immune infiltration pattern and survival. The proportion of M2 macrophages was more abundant in 68 samples, reaching more than 36%. Univariate Cox regression analysis displayed that the proportion of dendritic cells was obviously related to prognosis. Hierarchical clustering analysis identified two clusters by the method of within sum of squares errors, which exhibited different infiltrating immune cell composition and survival. To summarize, our results indicated that proportions of tumor-infiltrating immune cells as well as cluster patterns were associated with the prognosis, which offered clinical significance for research of meningiomas.


2020 ◽  
Vol 7 (12) ◽  
pp. 4158-4169
Author(s):  
Nhi Thao Huynh ◽  
Khuong Duy Pham ◽  
Nhat Chau Truong

Exosomes are subcellular entities which were first discovered in the 1980s. Over the past decade, scientists have discovered that they carry components of genetic information that allow for cell-cell communication and cell targeting. Exosomes secreted by cancer cells are termed cancer-derived exosomes (CDEs), and play an important role in tumor formation and progression. Specifically, CDEs mediate the communication between cancer cells, as well as between cancer cells and other cells in the tumor microenvironment, including cancer-associated fibroblasts, endothelial cells, mesenchymal stem cells, and effector immune cells. Additionally, through the vascular system and body fluids, CDEs can modulate response to drugs, increase angiogenesis, stimulate proliferation, promote invasion and metastasis, and facilitate escape from immune surveillance. This review will discuss the relationship between cancer cells and other cells (particularly immune cells), as mediated through CDEs, as well as the subsequent impact on tumorigenesis and immunomodulation. Understanding the role of CDEs in tumorigenesis and immune cell modulation will help advance their utilization in the diagnosis, prognosis, and treatment of cancer.


Sign in / Sign up

Export Citation Format

Share Document