scholarly journals MOF Regulates TNK2 Transcription Expression to Promote Cell Proliferation in Thyroid Cancer

2020 ◽  
Vol 11 ◽  
Author(s):  
Danyang Li ◽  
Yang Yang ◽  
Bo Chen ◽  
Xinghong Guo ◽  
Shuang Gao ◽  
...  

MOF is a well-known histone acetyltransferase to catalyze acetylation of histone H4 lysine 16 (K16), and it is relevant to diverse biological processes, such as gene transcription, cell cycle, early embryonic development and tumorigenesis. Here, we identify MOF as an oncogene in most thyroid cancer. It is found that expression level of MOF was significantly upregulated in most thyroid cancer tissue samples and cell lines. MOF-deficient in both BHP-10-3 and TT2609 cell lines inhibited cell proliferation by blocking the cell cycle in G1 phase and enhanced cell apoptosis. Mechanistically, MOF bound the TNK2 promoter to activate TNK2 transcription. Furthermore, the expression level of TNK2 was decreased with the histone acetyltransferase inhibitor. Besides, MOF promoted proliferation of thyroid cancer cells through increased phosphorylation of AKT, thus activating the PI3K/AKT pathway. Ultimately, our findings indicated that MOF played an oncogene role in development and progression of thyroid cancer and may be a potential novel target for the treatment of thyroid cancer.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5201-5201
Author(s):  
Shaowei Qiu ◽  
Jing Yu ◽  
Tengteng Yu ◽  
Haiyan Xing ◽  
Na An ◽  
...  

Abstract Introduction: As the important suprressor of P53, iASPP was found to be overexpressed in leukemia, and functioned as oncogene that inhibited apoptosis of leukemia cells. Sertad1 is identified as one of the proteins that can bind with iASPP in our previous study by two-hybrid screen. Sertad1 is highly expressed in carcinomas from pancreatic, lung and ovarian tissues, which considered Sertad1 as an oncoprotein. In this study, our findings revealed that Sertad1 could interact with iASPP in the cytoplasm near nuclear membrane, which could block iASPP to enter into nucleus to interact with P53, and inhibited the function of iASPP eventually. Methods: Co-immunoprecipitation and fluorescence confocal microscopic imaging were used to confirm the interaction between iASPP and Sertad1, the exact binding domains and the subcellular colocalization.The plasmids of iASPP and Sertad1 were transfected alone or co-transfected into K562 cells, the stable subclones that highly expressed iASPP, Sertad1 or both of them were then established by limiting dilution and named as K562-iASPPhi, K562-Sertad1hi, and K562-Douhi, respectively. The cell proliferation, cell cycle and apoptosis of above subclones were investigated by flow cytometry. Further, silence of the above two proteins was performed to confirm their functions. Immunoblotting analysis and immunofluorescence were performed to explore the possible mechanisms of difference between the biological functions of the above subclones. Results: Sertad1 expression level varied in leukemic cell lines and AML patients irrespectively of iASPP and P53. Interaction between iASPP and Sertad1 did exist in 293 cell and leukemic cells, both iASPP and Sertad1 scattered in the cytoplasm and nucleus, and their colocalizations were mainly in the cytoplasm, which encircled the nucleus. iASPP binds directly to Sertad1 through its PHD-bromo domain, C-terminal domain and Cyclin-A domain in a reduced order, and Serta domain failed to bind to iASPP. Overexpression of iASPP in K562 cells (iASPPhi) could result in the increased cell proliferation, cell cycle arrest in G2/M phase and resistance to apoptosis induced by chemotherapy drugs. While overexpression of iASPP and Sertad1 at the same time (Douhi) could slow down the cell proliferation, lead the cells more vulnerable to the chemotherapy drugs. As figure showed, in K562-Douhi cells, both iASPP and Sertad1 were obviously located in the cytoplasm, which encircled the nuclei, the subcellular colocalization was nearly outside the nuclei. The immunoblotting analysis further supported the conclusions. The resistance of iASPP to chemotherapeutic drug was accompanied by Puma protein expression in a p53-independent manner. By knocking down the expersssion of iASPP and Sertad separately, we found that iASPP is dispensable for maintenance of anti-apoptotic function and Sertad1 is indispensable for cell cycle in leukemic cells. Conclusions: In normal situation, the protein iASPP and Sertad1 scatter in the nucleus and cytoplasm, mainly in the cytoplasm. As convinced by our study, iASPP was overexpressed in the leukemia cell lines and primary AML patients, it could function as oncogene through its binding with P53 protein in the nucleus, inhibit the function of P53. When iASPPhi cells were exposed to apoptosis stimuli, Puma protein could play an important role in this process, irrespective of the expression level of P53. But when iASPP and Sertad1 were both overexpressed in the leukemic cells, Sertad1 could tether iASPP outside the nucleus mainly through its PHD-bromo domain, prevent it from inhibiting P53 function, suppress the leukemic cell growth and stimulate cell apoptosis by rescuing the P53 eventually. Our data provided a new insight to overcome iASPP protein, namely through its binding partners, when the similar proteins or drugs that can tether iASPP outside the nucleus such as Sertad1 are transfected into the leukemic cells, it may restore p53 function to eliminate the leukemic cells. Figure 1 Figure 1. Disclosures Wang: Novartis: Consultancy; Bristol Myers Squibb: Consultancy.


2020 ◽  
Author(s):  
Alessandra Dicitore ◽  
Maria Celeste Cantone ◽  
Germano Gaudenzi ◽  
Davide Saronni ◽  
Silvia Carra ◽  
...  

Introduction: Somatostatin and dopamine receptors have a pivotal role in control of hormone secretion and cell proliferation in different neuroendocrine neoplasms, including medullary thyroid cancer (MTC). In the present preclinical study, we evaluated the antitumor activity of TBR-065 (formerly BIM-23B065), a second-generation somatostatin-dopamine chimera, in two human MTC cell lines. Methods: the effects of lanreotide (LAN) and TBR-065 on the cell growth proliferation, calcitonin secretion, cell cycle, apoptosis, cell migration and tumor-induced angiogenesis have been evaluated through MTT assay, DNA flow cytometry with propidium iodide, and Annexin V-FITC/propidium iodide staining, ECLIA assay, wound-healing assay and zebrafish platform, respectively. Results: TBR-065 exerted a more prominent antitumor activity compared to LAN in both MTC cell lines, as shown by inhibition of cell proliferation (maximal inhibition in TT: -50.3% and -37.6%, respectively; in MZ-CRC-1: -58.8% and -27%, respectively) and migration (in TT: -42.7% and -22.9%, respectively; in MZ-CRC-1: -75.5% and -58.2%, respectively). Only the new chimera decreased significantly the fraction of cells in S phase (TT: -33.8%, MZ-CRC-1: -18.8%), and increased cells in G2/M phase (TT: +13%, MZ-CRC-1: +30.5%). In addition, TBR-065 exerted a more prominent pro-apoptotic effect compared to LAN in TT cells. A concomitant decrease of calcitonin secretion was observed after 2 days of incubation with both drugs, with a more relevant effect of TBR-065. However, neither LAN nor TBR-065 showed any effect on tumor-induced angiogenesis, as evaluated using a zebrafish/tumor xenograft model. Discussion/Conclusion: In MTC cell lines a second generation somatostatin-dopamine analogue, TBR-065, exerts a more relevant anti-tumor activity, as compared with LAN, through modulation of cell cycle, induction of apoptosis and reduction in migration. Further studies are required to establish whether TBR-065 has comparable potent inhibitory effects on tumor growth in vivo.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A852-A853
Author(s):  
Shilpa Thakur ◽  
Stephanie Cardenas ◽  
Joanna Klubo-Gwiezdzinska

Abstract Background: The long-term management of metastatic thyroid cancer (TC) consists of thyrotropin (TSH) suppression with supraphysiologic doses of thyroid hormones (TH) via a negative feedback loop. The goal of TSH suppression is to prevent TSH stimulation of the TSH receptor (TSHR), as it has been shown to promote proliferation of cancer cells. However, TH (T3 and T4) have also been shown to stimulate cancer cell proliferation via αvβ3 integrin signaling. Since both TSH and TH have mitogenic potential, we aimed to investigate which one is a more potent growth stimulus-TSH or TH by analyzing its growth stimulatory effects in TC models. Methods: We analyzed the mRNA expression of TSHR and ITGAV (αv), ITGB3 (β3) integrins in 496 human TC tissue samples, including 65 paired samples of normal tissue (NT) and the corresponding tumor included in The Cancer Genome Atlas (TCGA). We used 13 TC cell lines and analyzed the mRNA expression of 24 genes (4 thyroid-specific genes, 2 TH receptor genes, and 18 integrin genes) with an emphasis on the expression of cell surface receptors αv, β3 integrins, and TSHR. The protein expression of αv, β3, and TSHR was analyzed by immunoblotting. To test the effects of TH and TSH on cell proliferation and expression of αv, β3, and TSHR, cells were treated with varying concentrations of TSH (0.01, 0.1, 1, 10 mIU/mL), T3 (0.1, 1, 10 100 nM) and T4 (1, 10, 100, 1000 nM) for 72 h. Results: Analysis of the RNA seq data from TCGA revealed a significantly higher expression of TSHR in NT compared with TC (log fold change 0.59, p<0.001), lower expression of αv integrin in NT compared with TC (log fold change -0.3, p=0.001), and comparable expression of β3 integrin (log fold change 0.20, p=0.3). Based on the mRNA expression data of 13 TC cell lines, we selected 6 cell lines (FTC133, TPC1, XTC1, OCUT2, C643, THJ16T) characterized by variable αv, β3, and TSHR expression. The TPC1 and OCUT2 cells with high to moderate αVβ3 expression responded to T4 (1000nM; p<0.001) and T3 treatment (100nM; p<0.001) respectively, with increased proliferation, while the cell lines characterized by low to no β3 and/or low αV expression (FTC133, XTC1, C643, and THJ16T) did not change their growth rate in response to TH. The C643 and XTC1 cells characterized by a preserved low-to-moderate TSHR expression responded to TSH treatment (10mIU/mL) with increased proliferation (p<0.05), while the growth curve of cell lines with very low to no TSHR expression (FTC133, TPC1, OCUT1, THJ16T) was not affected. Analysis of the effects of TH and TSH on the mRNA expression of αV, β3, and TSHR was observed to be cell-line specific. Conclusion: The growth stimulatory effects of TSH and TH on TC cells depend on its concentration and expression of TSHR and αVβ3, respectively. Since TC is characterized by relatively lower TSHR and higher αV integrin expression than NT, treatment with supraphysiologic doses of TH in patients with metastatic TC needs to be individualized.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yubao Gong ◽  
Chen Yang ◽  
Zhengren Wei ◽  
Jianguo Liu

Abstract To explore the expression and the functions of SRPK1 in osteosarcoma, we retrieved transcription profiling dataset by array of human bone specimens from patients with osteosarcoma from ArrayExpress (accession E-MEXP-3628) and from Gene Expression Omnibus (accession GSE16102) and analyzed expression level of SRPK1 and prognostic value in human osteosarcoma. Then we examined the effect of differential SRPK1 expression levels on the progression of osteosarcoma, including cell proliferation, cell cycle, apoptosis, and investigated its underlying molecular mechanism using in vitro osteosarcoma cell lines and in vivo nude mouse xenograft models. High expression level of SRPK1 was found in human osteosarcoma tissues and cell lines as compared to the normal bone tissues and osteoblast cells, and predicted poor prognosis of human osteosarcoma. Overexpression of SRPK1 in osteosarcoma U2OS cells led to cell proliferation but inhibition of apoptosis. In contrast, knockdown of SRPK1 in HOS cells impeded cell viability and induction of apoptosis. Moreover, silencing SRPK1 inhibited osteosarcoma tumor growth in nude mice. Mechanistic studies revealed that SRPK1 promoted cell cycle transition in osteosarcoma cells and activation of NF-κB is required for SRPK1 expression and its pro-survival signaling. SRPK1 promoted human osteosarcoma cell proliferation and tumor growth by regulating NF-κB signaling pathway.


2006 ◽  
Vol 114 (S 1) ◽  
Author(s):  
B Trojanowicz ◽  
Z Chen ◽  
J Bialek ◽  
Y Radestock ◽  
S Hombach-Klonisch ◽  
...  

2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Hongying Zhao ◽  
Yu Wang ◽  
Xiubao Ren

Abstract Objective: Nicotine, the main ingredient in tobacco, is identified to facilitate tumorigenesis and accelerate metastasis in tumor. Studies in recent years have reported that long intergenic non-protein coding RNA 460 (LINC00460) is strongly associated with lung cancer poor prognosis and nicotine dependence. Nonetheless, it is unclear whether nicotine promotes the development of lung cancer through activation of LINC00460. Methods: We determined that LINC00460 expression in lung cancer tissues and the prognosis in patients with non-small cell lung carcinoma (NSCLC) using Gene Expression Profiling Interactive Analysis (GEPIA) website and The Cancer Genome Atlas (TCGA) database. Through in vitro experiments, we studied the effects of nicotine on LINC00460 in NSCLC cells lines using Cell Counting Kit-8 (CCK-8), transwell test, flow cytometry, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot assays. Results: We identified the significant up-regulated expression level of LINC00460 in NSCLC tissues and cell lines, especially, the negative correlation of LINC00460 expression level with overall survival (OS). In in vitro experiments, LINC00460 was overexpressed in NSCLC cell lines under nicotine stimulation. Nicotine could relieve the effect of LINC00460 knockdown on NSCLC cell proliferation, migration and apoptosis. The same influence was observed on PI3K/Akt signaling pathway. Conclusions: In summary, this is the first time to examine the potential roles of LINC00460 in lung cancer cell proliferation, migration and apoptosis induced by nicotine. This may help to develop novel therapeutic strategies for the prevention and treatment of metastatic tumors from cigarette smoke-caused lung cancer by blocking the nicotine-activated LINC00460 pathway.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Michela Levi ◽  
Roberta Salaroli ◽  
Federico Parenti ◽  
Raffaella De Maria ◽  
Augusta Zannoni ◽  
...  

Abstract Background Doxorubicin (DOX) is widely used in both human and veterinary oncology although the onset of multidrug resistance (MDR) in neoplastic cells often leads to chemotherapy failure. Better understanding of the cellular mechanisms that circumvent chemotherapy efficacy is paramount. The aim of this study was to investigate the response of two canine mammary tumour cell lines, CIPp from a primary tumour and CIPm, from its lymph node metastasis, to exposure to EC50(20h) DOX at 12, 24 and 48 h of treatment. We assessed the uptake and subcellular distribution of DOX, the expression and function of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP), two important MDR mediators. To better understand this phenomenon the effects of DOX on the cell cycle and Ki67 cell proliferation index and the expression of p53 and telomerase reverse transcriptase (TERT) were also evaluated by immunocytochemistry (ICC). Results Both cell lines were able to uptake DOX within the nucleus at 3 h treatment while at 48 h DOX was absent from the intracellular compartment (assessed by fluorescence microscope) in all the surviving cells. CIPm, originated from the metastatic tumour, were more efficient in extruding P-gp substrates. By ICC and qRT-PCR an overall increase in both P-gp and BCRP were observed at 48 h of EC50(20h) DOX treatment in both cell lines and were associated with a striking increase in the percentage of p53 and TERT expressing cells by ICC. The cell proliferation fraction was decreased at 48 h in both cell lines and cell cycle analysis showed a DOX-induced arrest in the S phase for CIPp, while CIPm had an increase in cellular death without arrest. Both cells lines were therefore composed by a fraction of cells sensible to DOX that underwent apoptosis/necrosis. Conclusions DOX administration results in interlinked modifications in the cellular population including a substantial effect on the cell cycle, in particular arrest in the S phase for CIPp and the selection of a subpopulation of neoplastic cells bearing MDR phenotype characterized by P-gp and BCRP expression, TERT activation, p53 accumulation and decrease in the proliferating fraction. Important information is given for understanding the dynamic and mechanisms of the onset of drug resistance in a neoplastic cell population.


2015 ◽  
Vol 100 (5) ◽  
pp. 1771-1779 ◽  
Author(s):  
Maomei Ruan ◽  
Min Liu ◽  
Qianggang Dong ◽  
Libo Chen

Abstract Context: The aberrant silencing of iodide-handling genes accompanied by up-regulation of glucose metabolism presents a major challenge for radioiodine treatment of papillary thyroid cancer (PTC). Objective: This study aimed to evaluate the effect of tyrosine kinase inhibitors on iodide-handling and glucose-handling gene expression in BHP 2-7 cells harboring RET/PTC1 rearrangement. Main Outcome Measures: In this in vitro study, the effects of sorafenib or cabozantinib on cell growth, cycles, and apoptosis were investigated by cell proliferation assay, cell cycle analysis, and Annexin V-FITC apoptosis assay, respectively. The effect of both agents on signal transduction pathways was evaluated using the Western blot. Quantitative real-time PCR, Western blot, immunofluorescence, and radioisotope uptake assays were used to assess iodide-handling and glucose-handling gene expression. Results: Both compounds inhibited cell proliferation in a time-dependent and dose-dependent manner and caused cell cycle arrest in the G0/G1 phase. Sorafenib blocked RET, AKT, and ERK1/2 phosphorylation, whereas cabozantinib blocked RET and AKT phosphorylation. The restoration of iodide-handling gene expression and inhibition of glucose transporter 1 and 3 expression could be induced by either drug. The robust expression of sodium/iodide symporter induced by either agent was confirmed, and 125I uptake was correspondingly enhanced. 18F-fluorodeoxyglucose accumulation was significantly decreased after treatment by either sorafenib or cabozantinib. Conclusions: Sorafenib and cabozantinib had marked effects on cell proliferation, cell cycle arrest, and signal transduction pathways in PTC cells harboring RET/PTC1 rearrangement. Both agents could be potentially used to enhance the expression of iodide-handling genes and inhibit the expression of glucose transporter genes.


2014 ◽  
Vol 99 (7) ◽  
pp. E1163-E1172 ◽  
Author(s):  
Wei Qiang ◽  
Yuan Zhao ◽  
Qi Yang ◽  
Wei Liu ◽  
Haixia Guan ◽  
...  

Context: ZIC1 has been reported to be overexpressed and plays an oncogenic role in some brain tumors, whereas it is inactivated by promoter hypermethylation and acts as a tumor suppressor in gastric and colorectal cancers. However, until now, its biological role in thyroid cancer remains totally unknown. Objectives: The aim of this study is to explore the biological functions and related molecular mechanism of ZIC1 in thyroid carcinogenesis. Setting and Design: Quantitative RT-PCR (qRT-PCR) was performed to evaluate mRNA expression of investigated genes. Methylation-specific PCR was used to analyze promoter methylation of the ZIC1 gene. The functions of ectopic ZIC1 expression in thyroid cancer cells were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays. Results: ZIC1 was frequently down-regulated by promoter hypermethylation in both primary thyroid cancer tissues and thyroid cancer cell lines. Moreover, our data showed that ZIC1 hypermethylation was significantly associated with lymph node metastasis in patients with papillary thyroid cancer. Notably, restoration of ZIC1 expression in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrest and apoptosis by blocking the activities of the phosphatidylinositol-3-kinase (PI3K)/Akt and RAS/RAF/MEK/ERK (MAPK) pathways, and enhancing FOXO3a transcriptional activity. Conclusions: Our data demonstrate that ZIC1 is frequently inactivated by promoter hypermethyaltion and functions as a tumor suppressor in thyroid cancer through modulating PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a.


2008 ◽  
Vol 93 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Audrey J. Robinson-White ◽  
Hui-Pin Hsiao ◽  
Wolfgang W. Leitner ◽  
Elizabeth Greene ◽  
Andrew Bauer ◽  
...  

Abstract Purpose: Protein kinase A (PKA) affects cell proliferation in many cell types and is a potential target for cancer treatment. PKA activity is stimulated by cAMP and cAMP analogs. One such substance, 8-Cl-cAMP, and its metabolite 8-Cl-adenosine (8-Cl-ADO) are known inhibitors of cancer cell proliferation; however, their mechanism of action is controversial. We have investigated the antiproliferative effects of 8-Cl-cAMP and 8-CL-ADO on human thyroid cancer cells and determined PKA’s involvement. Experimental Design: We employed proliferation and apoptosis assays and PKA activity and cell cycle analysis to understand the effect of 8-Cl-ADO and 8-Cl-cAMP on human thyroid cancer and HeLa cell lines. Results: 8-Cl-ADO inhibited proliferation of all cells, an effect that lasted for at least 4 d. Proliferation was also inhibited by 8-Cl-cAMP, but this inhibition was reduced by 3-isobutyl-1-methylxanthine; both drugs stimulated apoptosis, and 3-isobutyl-1-methylxanthine drastically reduced 8-Cl-cAMP-induced cell death. 8-Cl-ADO induced cell accumulation in G1/S or G2/M cell cycle phases and differentially altered PKA activity and subunit levels. PKA stimulation or inhibition and adenosine receptor agonists or antagonists did not significantly affect proliferation. Conclusions: 8-Cl-ADO and 8-Cl-cAMP inhibit proliferation, induce cell cycle phase accumulation, and stimulate apoptosis in thyroid cancer cells. The effect of 8-Cl-cAMP is likely due to its metabolite 8-Cl-ADO, and PKA does not appear to have direct involvement in the inhibition of proliferation by 8-Cl-ADO. 8-Cl-ADO may be a useful therapeutic agent to be explored in aggressive thyroid cancer.


Sign in / Sign up

Export Citation Format

Share Document