scholarly journals Comparative Evaluation of Forsythiae Fructus From Different Harvest Seasons and Regions by HPLC/NIR Analysis and Anti-inflammatory and Antioxidant Assays

2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Qu ◽  
Yuefei Li ◽  
Qi Dong ◽  
Shupeng Li ◽  
Hongliang Du ◽  
...  

Forsythiae Fructus (FF), the dry fruit of Forsythia suspensa (Thunb.) Vahl, has a long history of use in traditional Chinese Medicine for its heat-clearing and detoxifying properties. It possesses clinical therapeutic effects and biological functions showing efficacy in handling different diseases. To investigate the FF differences in Henan, Shanxi, and Shaanxi in August and October, the surface morphology, mid-infrared and near-infrared spectrums, and HPLC were analyzed. Concurrently, the anti-inflammatory and antioxidant effects on LPS-induced J774A.1 cells were evaluated by western blot and RT-qPCR. The results showed that FF from different Harvest Seasons and Regions are provided with different microstructures and mid-infrared and near-infrared spectrums, and the levels of forsythiaside A and phillyrin of FF from Shanxi in August and phillygenin of FF from Shaanxi in August were the highest. Meanwhile, FF from Shanxi and Shaanxi in August markedly reduced the levels of inflammatory cytokines and mediators (TNF-α, IL-1β, NF-κB, and iNOS) and the protein expression levels of phosphorylated total IKKα/β and nuclear NF-κB. In August, SXFF and SAXFF also promoted the mRNA expression levels of HO-1 and NQO1 and the protein expression levels of HO-1 and nuclear Nrf2 and suppressed the protein expression levels of KEAP1. Spearman correlation analysis showed that phillygenin had a strong correlation with the protein expression on LPS-induced J774A.1 cells. In summary, our results showed that FF from harvest seasons and regions contributed to the distinct differences in microstructure, the mid-infrared and near-infrared spectrums, and compound content. More importantly, FF from Shanxi and Shaanxi in August showed marked anti-inflammatory and antioxidant activities, but with some differences, which may be because of different contents of phillygenin and phillyrin of lignans in FF.

2021 ◽  
Vol 22 (22) ◽  
pp. 12600
Author(s):  
Mako Naniwa ◽  
Chihiro Nakatomi ◽  
Suzuro Hitomi ◽  
Kazunari Matsuda ◽  
Takuya Tabuchi ◽  
...  

Despite the long history of use of steroid ointments for oral mucositis, the analgesic mechanism has not been fully elucidated. In this study, we examined the effects of triamcinolone acetonide (Tmc) on oral ulcerative mucositis-induced pain in conscious rats by our proprietary assay system. Based on evaluations of the physical properties and retention periods in the oral mucosa of human volunteers and rats, we selected TRAFUL® ointment as a long-lasting base. In oral ulcerative mucositis model rats, TRAFUL® with Tmc suppressed cyclooxygenase-dependent inflammatory responses with upregulations of glucocorticoid receptor-induced anti-inflammatory genes and inhibited spontaneous nociceptive behavior. When an ointment with a shorter residual period was used, the effects of Tmc were not elicited or were induced to a lesser extent. Importantly, TRAFUL® with Tmc also improved oral ulcerative mucositis-induced mechanical allodynia, which has been reported to be independent of cyclooxygenase. Ca2+ imaging in dissociated trigeminal ganglion neurons showed that long-term preincubation with Tmc inhibited the hypertonic stimulation-induced Ca2+ response. These results suggest that the representative steroid Tmc suppresses oral ulcerative mucositis-induced pain by general anti-inflammatory actions and inhibits mechanical sensitivity in peripheral nerves. For drug delivery, long-lasting ointments such as TRAFUL® are needed to sufficiently induce the therapeutic effects.


2020 ◽  
Vol 28 (2) ◽  
pp. 360-376 ◽  
Author(s):  
Atefeh Amiri ◽  
Maryam Mahjoubin-Tehran ◽  
Zatollah Asemi ◽  
Alimohammad Shafiee ◽  
Sarah Hajighadimi ◽  
...  

: Cancer and inflammatory disorders are two important public health issues worldwide with significant socio.economic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qilu Wei ◽  
Ning Kong ◽  
Xiaohui Liu ◽  
Run Tian ◽  
Ming Jiao ◽  
...  

Abstract Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 302 ◽  
Author(s):  
Xin Zhang ◽  
Yao Qin ◽  
Zhaohai Pan ◽  
Minjing Li ◽  
Xiaona Liu ◽  
...  

The main chemical component of cannabis, cannabidiol (CBD), has been shown to have antitumor properties. The present study examined the in vitro effects of CBD on human gastric cancer SGC-7901 cells. We found that CBD significantly inhibited the proliferation and colony formation of SGC-7901 cells. Further investigation showed that CBD significantly upregulated ataxia telangiectasia-mutated gene (ATM) and p53 protein expression and downregulated p21 protein expression in SGC-7901 cells, which subsequently inhibited the levels of CDK2 and cyclin E, thereby resulting in cell cycle arrest at the G0–G1 phase. In addition, CBD significantly increased Bax expression levels, decreased Bcl-2 expression levels and mitochondrial membrane potential, and then upregulated the levels of cleaved caspase-3 and cleaved caspase-9, thereby inducing apoptosis in SGC-7901 cells. Finally, we found that intracellular reactive oxygen species (ROS) increased after CBD treatment. These results indicated that CBD could induce G0–G1 phase cell cycle arrest and apoptosis by increasing ROS production, leading to the inhibition of SGC-7901 cell proliferation, thereby suggesting that CBD may have therapeutic effects on gastric cancer.


2020 ◽  
Vol 21 (22) ◽  
pp. 8870 ◽  
Author(s):  
Jakub Mlost ◽  
Marta Bryk ◽  
Katarzyna Starowicz

Cannabis has a long history of medical use. Although there are many cannabinoids present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the two components found in the highest concentrations. CBD itself does not produce typical behavioral cannabimimetic effects and was thought not to be responsible for psychotropic effects of cannabis. Numerous anecdotal findings testify to the therapeutic effects of CBD, which in some cases were further supported by research findings. However, data regarding CBD’s mechanism of action and therapeutic potential are abundant and omnifarious. Therefore, we review the basic research regarding molecular mechanism of CBD’s action with particular focus on its analgesic potential. Moreover, this article describes the detailed analgesic and anti-inflammatory effects of CBD in various models, including neuropathic pain, inflammatory pain, osteoarthritis and others. The dose and route of the administration-dependent effect of CBD, on the reduction in pain, hyperalgesia or allodynia, as well as the production of pro and anti-inflammatory cytokines, were described depending on the disease model. The clinical applications of CBD-containing drugs are also mentioned. The data presented herein unravel what is known about CBD’s pharmacodynamics and analgesic effects to provide the reader with current state-of-art knowledge regarding CBD’s action and future perspectives for research.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 859 ◽  
Author(s):  
Huiling Chen ◽  
Qing Huang ◽  
Shunjia Zhang ◽  
Kaiqiang Hu ◽  
Wenxiang Xiong ◽  
...  

Major depressive disorder (MDD) is a chronic mental disorder characterized by mixed symptoms and complex pathogenesis. With long history of practical application, traditional Chinese medicine (TCM) offers many herbs for the treatment and rehabilitation of chronic disease. In this study, we developed a modified Chinese herbal formula using Panax ginseng, Angelica Sinensis, Polygala tenuifolia Willd, and Ziziphi spinosae Semen (PAPZ), based on an ancient TCM prescription. The antidepressant effects of PAPZ were investigated with a corticosterone (CORT) model of depression in mice. Our results showed that administration of PAPZ ameliorated depression-like phenotypes in the CORT model. An anatomic study showed that chronic PAPZ administration upregulated the protein expression of brain-derived neurotrophic factor (BDNF) in hippocampal tissue. The enzyme activity of superoxide dismutase was enhanced in hippocampal tissue, in line with a decreased malondialdehyde level. Taken together, these findings suggested that PAPZ has therapeutic effects in a mice depression model through increasing protein expression of BDNF and improving the anti-oxidation ability of the brain.


2016 ◽  
Vol 11 (11) ◽  
pp. 1934578X1601101 ◽  
Author(s):  
María Inés Isla ◽  
María Alejandra Moreno ◽  
Gabriela Nuño ◽  
Fabiola Rodriguez ◽  
Antonella Carabajal ◽  
...  

Zuccagnia punctata Cav. (Fabaceae, Caesalpiniaceae) is a plant with a long history of use in Argentine traditional medicines; it belongs to a monotypic genus, and is an endemic species of Argentina. This review provides a comprehensive overview of the traditional uses, phytochemistry, pharmacological activity and toxicology of Z. punctata. A wide range of traditional uses are cited in the literature such as antibacterial, antifungal, anti-inflammatory, and antitumor, among others. Pharmacological studies to date have demonstrated significant activities that support the traditional uses of this plant. No human clinical trials had been completed up to the time of this review and no toxic effect had been detected in animals. Compounds from different chemical groups have been isolated such as phenolic compounds and essential oils. Plant extracts and phytochemicals isolated exhibit a broad range of activities, anti-inflammatory, antibacterial, antifungal, antigenotoxic, antioxidant, antiulcer, and nematicidal. The main bioactive phytochemicals in the aerial parts (leaf, stem and flower) were identified as 2′, 4′-dihydroxy-3′-methoxychalcone and 2′, 4′-dihydroxychalcone and were proposed as chemical markers. Consequently, standardized dry extracts of aerial parts of Z. puntacta could be used in herbal medicinal products. Also, they could be included in phytotherapeutic preparations such as capsules, creams, and gels, and for microencapsulation.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4062
Author(s):  
Xueda Dong ◽  
Yiwen Guo ◽  
Chuan Xiong ◽  
Liwei Sun

Rhodiola species have a long history of use in traditional medicine in Asian and European countries and have been considered to possess resistance to the challenges presented by extreme altitudes. However, the influence of different Rhodiola species on quality is unclear, as well as the influence of altitude on phytochemicals. In this study, the phenolic components and antioxidant abilities of two major Rhodiola species are compared, namely Rhodiolacrenulata and Rhodiola rosea, and the metabolomes of Rhodiolacrenulata from two representative elevations of 2907 and 5116 m are analyzed using a UPLC-QqQ-MS-based metabolomics approach. The results show that the phenolic components and antioxidant activities of Rhodiolacrenulata are higher than those of Rhodiola rosea, and that these effects in the two species are positively correlated with elevation. Here, 408 metabolites are identified, of which 178 differential metabolites (128 upregulated versus 50 downregulated) and 19 biomarkers are determined in Rhodiola crenulata. Further analysis of these differential metabolites showed a significant upregulation of flavonoids, featuring glucosides, the enhancement of the phenylpropanoid pathway, and the downregulation of hydrolyzed tannins in Rhodiola crenulata as elevation increased. Besides, the amino acids of differential metabolites were all upregulated as the altitude increased. Our results contribute to further exploring the Rhodiola species and providing new insights into the Rhodiola crenulata phytochemical response to elevation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Luis Ângelo Macedo Santiago ◽  
Roberval Nascimento Moraes Neto ◽  
Ana Caroline Santos Ataíde ◽  
Dâmaris Cristina Sousa Carvalho Fonseca ◽  
Enio Fernandes Aragão Soares ◽  
...  

AbstractRheumatoid arthritis (RA) is a systemic inflammatory disease characterized by synovial inflammation leading to progressive joint erosion and, eventually, joint deformities. RA treatment includes anti-inflammatories, corticosteroids, synthetic disease-modifying antirheumatic drugs (DMARDs), and immunosuppressants. Drug administration is associated with adverse reactions, as gastrointestinal ulcers, cardiovascular complications, and opportunistic infections. Wherefore, different plant-derived phytochemical compounds are studied like new therapeutic approach to treatment of RA. Among the phytochemical compounds of plants for treatment of RA, flavonoids, alkaloids and saponins are related for present anti-inflammatory activity and act as physiological and metabolic regulators. They have low toxicity compared to other active plant compounds, so their therapeutic properties are widely studied. The intention of the review is to present an overview of the therapeutics of flavonoids, alkaloids, and saponins for RA. An extensive literature survey was undertaken through different online platforms:PubMed, SciELO, and Virtual Health Library databases, to identify phytochemical compounds used in RA treatment and the descriptors used were medicinal plants, herbal medicines, and rheumatoid arthritis. Seventy-five research and review articles were found to be apt for inclusion into the review. The present study summarizes the phytochemicals isolated from plants that have therapeutic effects on RA models, in vitro and in vivo. The studied substances exerted anti-inflammatory, chondroprotective, immunoregulatory, anti-angiogenic, and antioxidant activities and the most compounds possess good therapeutic properties, valuable for further research for treatment of RA.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qiu-Yue Wang ◽  
Na Zhang ◽  
Shu-Yu Liu ◽  
Xi-Hong Jiang ◽  
Shu-Min Liu

Huangqi Chifeng Tang (HQCFT), a traditional Chinese formula of three herbs, has been used to treat cerebral infarction (CI). Saposhnikoviae Radix (SR) was designed as a guiding drug for HQCFT to improve its angiogenic and anti-inflammatory effects. In this study, TTC staining was used to detect the area of CI. H&E staining was used to detect the histopathologic changes in the cerebral tissue. Western blotting was performed to detect the protein expression of NLRP3, caspase 1, IL-1β, IL-6, TNF-α, MMP-9, VEGF, and VEGFR2 in cerebral tissue. Immunohistochemistry was used to detect the protein expression of MMP-9, VEGF, and VEGFR2. The contents of HIF-1α, NLRP3, caspase 1, IL-1β, IL-6, and TNF-α in the serum were determined by ELISA. Our study showed that HQCFT and HQCFT-SR could improve the pathological condition and reduce the infarcted area of the brain tissue in a rat model. In addition, HQCFT and HQCFT-SR significantly decreased the expression levels and serum contents of NLRP3, caspase 1, IL-1β, IL-6, and TNF-α; increased the expression levels of the VEGF and VEGFR2 proteins; and obviously reduced the serum content of HIF-1α. Importantly, the cytokines in brain tissue and serum from the HQCFT group exhibited better efficacy than those from the HQCFT-SR group. HQCFT exerted significant angiogenic and anti-inflammatory effects in rats subjected to middle cerebral artery occlusion (MCAO); these effects can be attributed to the guiding and enhancing effect of SR.


Sign in / Sign up

Export Citation Format

Share Document