scholarly journals The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer

2021 ◽  
Vol 12 ◽  
Author(s):  
Kha Wai Hon ◽  
Syafiq Asnawi Zainal Abidin ◽  
Iekhsan Othman ◽  
Rakesh Naidu

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Edward Greenfield ◽  
Erin Griner ◽  

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of 50 papers in the field of cancer biology published between 2010 and 2012. This Registered Report describes the proposed replication plan of key experiments from ‘Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors’ by Wilson and colleagues, published in Nature in 2012 (<xref ref-type="bibr" rid="bib20">Wilson et al., 2012</xref>). The experiments that will be replicated are those reported in Figure 2B and C. In these experiments, Wilson and colleagues show that sensitivity to receptor tyrosine kinase (RTK) inhibitors can be bypassed by various ligands through reactivation of downstream signaling pathways (Figure 2A; <xref ref-type="bibr" rid="bib20">Wilson et al., 2012</xref>), and that blocking the receptors for these bypassing ligands abrogates their ability to block sensitivity to the original RTK inhibitor (Figure 2C; <xref ref-type="bibr" rid="bib20">Wilson et al., 2012</xref>). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 122 ◽  
Author(s):  
Eric Freund ◽  
Kim-Rouven Liedtke ◽  
Lea Miebach ◽  
Kristian Wende ◽  
Amanda Heidecke ◽  
...  

Colorectal carcinoma is among the most common types of cancers. With this disease, diffuse scattering in the abdominal area (peritoneal carcinosis) often occurs before diagnosis, making surgical removal of the entire malignant tissue impossible due to a large number of tumor nodules. Previous treatment options include radiation and its combination with intraperitoneal heat-induced chemotherapy (HIPEC). Both options have strong side effects and are often poor in therapeutic efficacy. Tumor cells often grow and proliferate dysregulated, with enzymes of the protein kinase family often playing a crucial role. The present study investigated whether a combination of protein kinase inhibitors and low-dose induction of oxidative stress (using hydrogen peroxide, H2O2) has an additive cytotoxic effect on murine, colorectal tumor cells (CT26). Protein kinase inhibitors from a library of 80 substances were used to investigate colorectal cancer cells for their activity, morphology, and immunogenicity (immunogenic cancer cell death, ICD) upon mono or combination. Toxic compounds identified in 2D cultures were confirmed in 3D cultures, and additive cytotoxicity was identified for the substances lavendustin A, GF109203X, and rapamycin. Toxicity was concomitant with cell cycle arrest, but except HMGB1, no increased expression of immunogenic markers was identified with the combination treatment. The results were validated for GF109203X and rapamycin but not lavendustin A in the 3D model of different colorectal (HT29, SW480) and pancreatic cancer cell lines (MiaPaca, Panc01). In conclusion, our in vitro data suggest that combining oxidative stress with chemotherapy would be conceivable to enhance antitumor efficacy in HIPEC.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 404 ◽  
Author(s):  
Guo ◽  
Tan ◽  
Chen ◽  
Wang ◽  
Feng

Cancer is a common and complex disease with high incidence and mortality rates, which causes a severe public health problem worldwide. As one of the standard therapeutic approaches for cancer therapy, the prognosis and outcome of chemotherapy are still far from satisfactory due to the severe side effects and increasingly acquired resistance. The development of novel and effective treatment strategies to overcome chemoresistance is urgent for cancer therapy. Metabolic reprogramming is one of the hallmarks of cancer. Cancer cells could rewire metabolic pathways to facilitate tumorigenesis, tumor progression, and metastasis, as well as chemoresistance. The metabolic reprogramming may serve as a promising therapeutic strategy and rekindle the research enthusiasm for overcoming chemoresistance. This review focuses on emerging mechanisms underlying rewired metabolic pathways for cancer chemoresistance in terms of glucose and energy, lipid, amino acid, and nucleotide metabolisms, as well as other related metabolisms. In particular, we highlight the potential of traditional Chinese medicine as a chemosensitizer for cancer chemotherapy from the metabolic perspective. The perspectives of metabolic targeting to chemoresistance are also discussed. In conclusion, the elucidation of the underlying metabolic reprogramming mechanisms by which cancer cells develop chemoresistance and traditional Chinese medicines resensitize chemotherapy would provide us a new insight into developing promising therapeutics and scientific evidence for clinical use of traditional Chinese medicine as a chemosensitizer for cancer therapy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1551-1551
Author(s):  
Hairui Su ◽  
Han Guo ◽  
Ngoc-Tung Tran ◽  
Minkui Luo ◽  
Xinyang Zhao

Abstract Metabolic reprogramming is needed not only to accommodate but also to drive leukemia progression. Yet very little is known on genetic factors other than IDH1 mutations, which can drive leukemogenesis via metabolic reprogramming. Here, we will present data to suggest that protein arginine methyltransferases 1 (PRMT1) is a driver for acute megakaryocytic leukemia via reprogramming metabolism. PRMT1 is highly expressed in megakaryocyte-erythrocyte progenitor cells and downregulated during the terminal differentiation of megakaryocytes. Constitutively high expression of PRMT1 in acute megakaryoblastic leukemia (AMKL) blocks megakaryocyte differentiation. PRMT1 upregulates RBM15 protein level via methylation-dependent ubiquitylation pathway (Zheng et al. Elife, 2015). In this presentation, we discovered that metabolic stress such as hypoxia downregulates PRMT1 protein level. Thus, metabolic stress is the upstream signal for the PRMT1-RBM15 pathway. We have identified that RBM15 specifically binds to 3'UTR of mRNAs of genes involved in metabolic pathways. Using RNA-immunoprecipitation with anti-RBM15 antibody and real-time PCR assays, we validated that RBM15 binds to mRNAs of genes involved in fatty acid oxidation and glycolysis. We transduced PRMT1 into an RBM15-MKL1 expressing cell line 6133. Overexpression of PRMT1 renders 6133 cells to grow in a cytokine-independent manner with increased mitochondria biogenesis, which in turn produces higher concentration of ATP in our metabolomic analysis. Based on the analysis of metabolomics data and RBM15-target genes, we conclude that PRMT1 promotes the usage of glucose as bioenergy via oxidative phosphorylation and inhibits fatty acid oxidation. Given that acetyl-coA is higher in PRMT1 expressing 6133 cells, we asked whether histone acetylation is upregulated in PRMT1 overexpressed 6133 cells. Indeed, we found higher histone acetylation level in PRMT1 highly expressed cells. We also found that propionylated histone is reduced, which is consistent with reduced fatty acid oxidation. Propionyl-CoA molecules are produced from fatty acids with odd carbon numbers. Thus PRMT1-mediated metabolic reprogramming changes epigenetic programming during leukemia progression. Intriguing, we also found PRMT1 overexpression enhances histone H3S10 phosphorylation via methylation-dependent ubiquitylation of DUSP4. DUSP4 promotes polyploidy during megakaryocyte differentiation. Thus PRMT1 caused profound epigenetic changes to promote leukemogenesis. In this vein, we established mouse AMKL models by bone marrow transplantation of 6133 cells as well as human AMKL patient samples respectively. Using this mouse model, we tested PRMT1 inhibitors, acetyltransferase inhibitors as well as other metabolic inhibitors. Treating cells with PRMT1 inhibitors as well as metabolic inhibitors promote MK differentiation of AMKL leukemia cells. Metabolomics analysis of cells recovered from mouse models will be discussed in the presentation. In summary, our data demonstrated that PRMT1 is a major sensor for metabolic stress and that PRMT1 in turn reprograms metabolic pathways to bring epigenetic changes in leukemogenesis. Therefore, targeting PRMT1 and downstream PRMT1-regulated metabolic pathways will offer new avenues in treating acute megakaryocytic leukemia and other hematological malignancies with defective megakaryocyte differentiation. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Gustavo Garcia ◽  
Arun Sharma ◽  
Arunachalam Ramaiah ◽  
Chandani Sen ◽  
Donald Kohn ◽  
...  

ABSTRACTEmergence of a highly contagious novel coronavirus, SARS-CoV-2 that causes COVID-19, has precipitated the current global health crisis with over 479,000 deaths and more than 9.3 million confirmed cases. Currently, our knowledge of the mechanisms of COVID-19 disease pathogenesis is very limited which has hampered attempts to develop targeted antiviral strategies. Therefore, we urgently need an effective therapy for this unmet medical need. Viruses hijack and dysregulate cellular machineries in order for them to replicate and infect more cells. Thus, identifying and targeting dysregulated signaling pathways that have been taken over by viruses is one strategy for developing an effective antiviral therapy. We have developed a high-throughput drug screening system to identify potential antiviral drugs targeting SARS-CoV-2. We utilized a small molecule library of 430 protein kinase inhibitors, which are in various stages of clinical trials. Most of the tested kinase antagonists are ATP competitive inhibitors, a class of nucleoside analogs, which have been shown to have potent antiviral activity. From the primary screen, we have identified 34 compounds capable of inhibiting viral cytopathic effect in epithelial cells. Network of drug and protein relations showed that these compounds specifically targeted a limited number of cellular kinases. More importantly, we have identified mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-Damage Response (DDR) pathways as key cellular signaling pathways critical for SARS-CoV-2 infection. Subsequently, a secondary screen confirmed compounds such as Berzosertib (VE-822), Vistusertib (AZD2014), and Nilotinib with anti SARS-CoV-2 activity. Finally, we found that Berzosertib, an ATR kinase inhibitor in the DDR pathway, demonstrated potent antiviral activity in a human epithelial cell line and human induced pluripotent stem cell (hIPSC)-derived cardiomyocytes. These inhibitors are already in clinical trials of phase 2 or 3 for cancer treatment, and can be repurposed as promising drug candidates for a host-directed therapy of SARS-CoV-2 infection. In conclusion, we have identified small molecule inhibitors exhibiting anti SARS-CoV-2 activity by blocking key cellular kinases, which gives insight on important mechanism of host-pathogen interaction. These compounds can be further evaluated for the treatment of COVID-19 patients following additional in vivo safety and efficacy studies.DisclosuresNone declared.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 623 ◽  
Author(s):  
Jinyan Shen ◽  
Li Li ◽  
Tao Yang ◽  
Niuliang Cheng ◽  
Gongqin Sun

Treatment of colorectal cancer mostly relies on traditional therapeutic approaches, such as surgery and chemotherapy. Limited options of targeted therapy for colorectal cancer narrowly focus on blocking cancer-generic targets VEGFR and EGFR. Identifying the oncogenic drivers, understanding their contribution to proliferation, and finding inhibitors to block such drivers are the keys to developing targeted therapy for colorectal cancer. In this study, ten colorectal cancer cell lines were screened against a panel of protein kinase inhibitors blocking key oncogenic signaling pathways. The results show that four of the 10 cell lines did not respond to any kinase inhibitors significantly, the other six were mildly inhibited by AZD-6244, BMS-754807, and/or dasatinib. Mechanistic analyses demonstrate that these inhibitors independently block the MAP kinase pathway, IR/IGF-1R/AKT pathway, and Src kinases, suggesting a multi-driver nature of proliferative signaling in these cells. Most of these cell lines were potently and synergistically inhibited by pair-wise combinations of these drugs. Furthermore, seven of the 10 cell lines were inhibited by the triple combination of AZD-6244/BMS-754807/dasatinib with IC50’s between 10 and 84 nM. These results suggest that combination targeted therapy may be an effective strategy against colorectal cancer.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Haitao Lu ◽  
Yumei Que ◽  
Xia Wu ◽  
Tianbing Guan ◽  
Hao Guo

Abstract Biofilm formation plays a key role in many bacteria causing infections, which mostly accounts for high-frequency infectious recurrence and antibiotics resistance. In this study, we sought to compare modified metabolism of biofilm and planktonic populations with UTI89, a predominant agent of urinary tract infection, by combining mass spectrometry based untargeted and targeted metabolomics methods, as well as cytological visualization, which enable us to identify the driven metabolites and associated metabolic pathways underlying biofilm formation. Surprisingly, our finding revealed distinct differences in both phenotypic morphology and metabolism between two patterns. Furthermore, we identified and characterized 38 differential metabolites and associated three metabolic pathways involving glycerolipid metabolism, amino acid metabolism and carbohydrate metabolism that were altered mostly during biofilm formation. This discovery in metabolic phenotyping permitted biofilm formation shall provide us a novel insight into the dissociation of biofilm, which enable to develop novel biofilm based treatments against pathogen causing infections, with lower antibiotic resistance.


2019 ◽  
Vol 20 (16) ◽  
pp. 3960 ◽  
Author(s):  
Yi-Ta Hsieh ◽  
Yi-Fen Chen ◽  
Shu-Chun Lin ◽  
Kuo-Wei Chang ◽  
Wan-Chun Li

Considering the great energy and biomass demand for cell survival, cancer cells exhibit unique metabolic signatures compared to normal cells. Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent neoplasms worldwide. Recent findings have shown that environmental challenges, as well as intrinsic metabolic manipulations, could modulate HNSCC experimentally and serve as clinic prognostic indicators, suggesting that a better understanding of dynamic metabolic changes during HNSCC development could be of great benefit for developing adjuvant anti-cancer schemes other than conventional therapies. However, the following questions are still poorly understood: (i) how does metabolic reprogramming occur during HNSCC development? (ii) how does the tumorous milieu contribute to HNSCC tumourigenesis? and (iii) at the molecular level, how do various metabolic cues interact with each other to control the oncogenicity and therapeutic sensitivity of HNSCC? In this review article, the regulatory roles of different metabolic pathways in HNSCC and its microenvironment in controlling the malignancy are therefore discussed in the hope of providing a systemic overview regarding what we knew and how cancer metabolism could be translated for the development of anti-cancer therapeutic reagents.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-37
Author(s):  
Zhenghao Chen ◽  
Gaspard Cretenet ◽  
Beatriz Valle-Argos ◽  
Francesco Forconi ◽  
Arnon P. Kater ◽  
...  

Introduction. Altered metabolism is one of the hallmarks of cancer. CLL cells circulate between peripheral blood (PB) and lymph nodes (LN) which necessitates high metabolic plasticity. In LN, CLL cells receive proliferative and pro-survival signals from surrounding cells, and become metabolically activated. However, detailed insight into the altered metabolism of LN CLL and how this may be related to therapeutic responses is lacking. As it is technically difficult to obtain direct insight into CLL LN metabolism, we have applied a two-tiered strategy. By using PB samples taken from patients before/after treatment with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib (IBR), which drives CLL cells out of the LN, combined with in vitro re-stimulation of TME signals, we indirectly mapped the metabolism of CLL in their TME, as well as the effects of IBR treatment. We hypothesized that the overlapping/distinct metabolites affected by IBR and in vitro stimulations would reflect the actual CLL metabolism in LN. Methods. PB samples were obtained from 7 CLL patients before or after 3 months of ibrutinib treatment. These paired samples were in vitro stimulated via CD40 and B cell receptor (BCR), which are potential key signals within the tumour microenvironment (TME). Seahorse extracellular flux (ECF) analyses, expression of activation markers (CD95, pS6 by FACS), RNA was isolated for expression of Myc (major driver of metabolic reprogramming) and its target genes, and metabolomics by mass-spec was performed. Results. ECF analyses showed that in comparison to BCR stimulated PB CLL cells, stimulation by CD40 resulted in a high increase of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). A prominent effect on OXPHOS and glycolytic activity was confirmed in direct LN samples, and indirectly by marker analyses in LN emigrants using CXCR4/CD5 staining [1]. Subsequent metabolomics analyses showed that metabolic reprogramming following CD40 or BCR stimulation revealed both shared and distinct responses. The affected metabolic pathways, predicted by significantly changed metabolites, were compared in a pairwise fashion; upregulated by CD40 and BCR but downregulated by IBR, respectively. The results demonstrated 5 upregulated pre-defined pathways (KEGG) by both CD40 and BCR triggering: purine metabolism, Warburg effect, lysine degradation, glucose-alanine cycle and glutamate metabolism. In contrast, the following pathways indicated the two signals had distinct functions on regulating metabolism: CD40 signalling mostly regulates amino acid metabolism, tricarboxylic acid cycle (TCA) and mitochondrial metabolism related to oxidative phosphorylation (OXPHOS) and energy production. BCR signalling mainly involves glucose and glycerol metabolism, which are usually related to biosynthesis. CLL cells from IBR-treated patients showed enhanced BCR responsiveness, in line with the increased in surface IgM expression upon IBR [2]. In contrast, IBR treatment suppressed in vitro CD40 activation, which was accompanied by a lower CD40 expression. Metabolomics analyses also demonstrated that CD40 responses decreased but BCR response increased after IBR. Additionally, analyses of Myc and its target genes showed that they are induced after BCR as well as CD40 stimulation. Effects of IBR on Myc (target) expression were variable for BCR and reduced for CD40 stimulation. Conclusions. In vivo IBR treatment suppresses CD40 expression and activation and enhances BCR responsiveness. Metabolic changes of CLL in LN are recapitulated by these two signals, while IBR treatment shows opposite effects, together providing indirect insight into the LN metabolism. In LN, CD40 may play a prominent role to enhance most of the key metabolic pathways, particularly OXPHOS. This is the first study to describe the metabolic network of CLL cells in LN, and the long-term effects of IBR may yield new clues to therapy response and resistance. References 1. Calissano, Carlo, et al. "Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells." Molecular Medicine 17.11 (2011): 1374-1382. 2. Drennan, Samantha, et al. "Ibrutinib therapy releases leukemic surface IgM from antigen drive in chronic lymphocytic leukemia patients." Clinical Cancer Research 25.8 (2019): 2503-2512. Disclosures Forconi: AbbVie: Honoraria, Other: Fees for cosulting or advisory role, received travel and expenses, Speakers Bureau; Janssen: Honoraria, Other: Fees for cosulting or advisory role, received travel and expenses, Speakers Bureau; Roche: Honoraria; Novartis: Honoraria; Menarini: Other: Fees for cosulting or advisory role; Astra Zeneca: Other: Fees for cosulting or advisory role; Gilead: Research Funding. Kater:Roche: Research Funding; Abbvie: Research Funding; Genentech: Research Funding; Celgene: Research Funding; Janssen: Research Funding. Eldering:Janssen: Research Funding; Celgene: Research Funding; Genentech: Research Funding.


1994 ◽  
Vol 5 (3) ◽  
pp. 313-322 ◽  
Author(s):  
J R Apgar

Crosslinking of the IgE receptor on rat basophilic leukemia (RBL) cells using the multivalent antigen DNP-BSA leads to a rapid and sustained increase in the filamentous actin content of the cells. Stimulation of RBL cells through the adenosine receptor also induces a very rapid polymerization of actin, which peaks in 45-60 s and is equivalent in magnitude to the F-actin response elicited through stimulation of the IgE receptor. However, in contrast to the IgE mediated response, which remains elevated for over 30 min, the F-actin increase induced by the adenosine analogue 5'-(N-ethylcarboxamido)-adenosine (NECA) is relatively transient and returns to baseline values within 5-10 min. While previous work has shown that the polymerization of actin in RBL cells stimulated through the IgE receptor is mediated by protein kinase C (PKC), protein kinase inhibitors have no effect on the F-actin response activated through the adenosine receptor. In contrast, pretreatment of the cells with pertussis toxin completely inhibits the F-actin response to NECA but has relatively little effect on the response induced through the IgE receptor. Stimulation of RBL cells through either receptor causes increased production of phosphatidylinositol mono-phosphate (PIP) and phosphatidylinositol bis-phosphate (PIP2), which correlates with the F-actin response. Production of PIP and PIP2 may be important downstream signals since these polyphosphoinositides are able to regulate the interaction of gelsolin and profilin with actin. Thus the polymerization of actin can be triggered through either the adenosine receptor or the IgE receptor, but different upstream signaling pathways are being used. The IgE mediated response requires the activation of PKC while stimulation through the adenosine receptor is PKC independent but involves a G protein.


Sign in / Sign up

Export Citation Format

Share Document