scholarly journals Long-Term Course of Humoral and Cellular Immune Responses in Outpatients After SARS-CoV-2 Infection

2021 ◽  
Vol 9 ◽  
Author(s):  
Julia Schiffner ◽  
Insa Backhaus ◽  
Jens Rimmele ◽  
Sören Schulz ◽  
Till Möhlenkamp ◽  
...  

Characterization of the naturally acquired B and T cell immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important for the development of public health and vaccination strategies to manage the burden of COVID-19 disease. We conducted a prospective, cross-sectional analysis in COVID-19 recovered patients at various time points over a 10-month period in order to investigate how circulating antibody levels and interferon-gamma (IFN-γ) release by peripheral blood cells change over time following natural infection. From March 2020 till January 2021, we enrolled 412 adults mostly with mild or moderate disease course. At each study visit, subjects donated peripheral blood for testing of anti-SARS-CoV-2 IgG antibodies and IFN-γ release after SARS-CoV-2 S-protein stimulation. Anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies were positive in 316 of 412 (76.7%) and borderline in 31 of 412 (7.5%) patients. Our confirmation assay for the presence of neutralizing antibodies was positive in 215 of 412 (52.2%) and borderline in 88 of 412 (21.4%) patients. Likewise, in 274 of 412 (66.5%) positive IFN-γ release and IgG antibodies were detected. With respect to time after infection, both IgG antibody levels and IFN-γ concentrations decreased by about half within 300 days. Statistically, production of IgG and IFN-γ were closely associated, but on an individual basis, we observed patients with high-antibody titres but low IFN-γ levels and vice versa. Our data suggest that immunological reaction is acquired in most individuals after natural infection with SARS-CoV-2 and is sustained in the majority of patients for at least 10 months after infection after a mild or moderate disease course. Since, so far, no robust marker for protection against COVID-19 exists, we recommend utilizing both, IgG and IFN-γ release for an individual assessment of the immunity status.

2021 ◽  
Author(s):  
Julia Schiffner ◽  
Insa Backhaus ◽  
Jens Rimmele ◽  
Soeren Schulz ◽  
Till Moehlenkamp ◽  
...  

Characterisation of the naturally acquired B and T cell immune responses to SARS-CoV-2 is important for the development of public health and vaccination strategies to manage the burden of COVID-19 disease. We conducted a prospective, longitudinal analysis in COVID-19 recovered patients at various time points over a 10-month period in order to determine how circulating antibody levels and interferon-gamma (IFN-γ) release by peripheral blood cells change over time following natural infection. From March 2020 till January 2021, we enrolled 412 adults mostly with mild or moderate disease course. At each study visit, subjects donated peripheral blood for testing of anti-SARS-CoV-2 IgG antibodies and IFN-γ release after SARS-CoV-2 S-protein stimulation. Anti-SARS-CoV-2 IgG antibodies were identified in 316/412 (76.7%) of the patients and 215/412 (52.2%) had positive neutralizing antibody levels. Likewise, in 274/412 (66.5 %) positive IFN-γ release and IgG antibodies were detected. With respect to time after infection, both IgG antibody levels and IFN-γ concentrations decreased by about half within three hundred days. Statistically, IgG and IFN-γ production were closely associated, but on an individual basis we observed patients with high antibody titres but low IFN-γ levels and vice versa. Our data suggest that immunological reaction is acquired in most individuals after infection with SARS-CoV-2 and is sustained in the majority of patients for at least 10 months after infection. Since no robust marker for protection against COVID-19 exists so far, we recommend utilizing both, IgG and IFN-γ release for an individual assessment of immunity status.


2003 ◽  
Vol 10 (6) ◽  
pp. 1043-1050 ◽  
Author(s):  
Ketil Moen ◽  
Johan G. Brun ◽  
Tor Magne Madland ◽  
Turid Tynning ◽  
Roland Jonsson

ABSTRACT The objective of the present study was to investigate immunoglobulin G (IgG) and IgA antibody immune responses to Porphyromonas gingivalis, Prevotella intermedia, Bacteroides forsythus, and Candida albicans in the sera of patients with rheumatoid arthritis (RA), the synovial fluid (SF) of patients with RA (RA-SF samples), and the SF of patients without RA (non-RA-SF samples). An enzyme-linked immunosorbent assay was used to determine IgG and IgA antibody levels in 116 serum samples from patients with RA, 52 RA-SF samples, and 43 non-RA-SF samples; and these were compared with those in SF samples from 9 patients with osteoarthritis (OA-SF samples) and the blood from 100 donors (the control [CTR] group). Higher levels of IgG antibodies against B. forsythus (P < 0.0001) and P. intermedia (P < 0.0001) were found in non-RA-SF samples than in OA-SF samples, and higher levels of IgG antibodies against B. forsythus (P = 0.003) and P. intermedia (P = 0.024) were found in RA-SF samples than in OA-SF samples. Significantly higher levels of IgA antibodies against B. forsythus were demonstrated in both RA-SF and non-RA-SF samples than in OA-SF samples. When corrected for total Ig levels, levels of IgG antibody against B. forsythus were elevated in RA-SF and non-RA-SF samples compared to those in OA-SF samples. Lower levels of Ig antibodies against B. forsythus were found in the sera of patients with RA than in the plasma of the CTR group for both IgG (P = 0.003) and IgA (P < 0.0001). When corrected for total Ig levels, the levels of IgG and IgA antibodies against B. forsythus were still found to be lower in the sera from patients with RA than in the plasma of the CTR group (P < 0.0001). The levels of antibodies against P. gingivalis and C. albicans in the sera and SF of RA and non-RA patients were comparable to those found in the respective controls. The levels of IgG and IgA antibodies against B. forsythus were elevated in SF from patients with RA and non-RA-SF samples compared to those in OA-SF samples. Significantly lower levels of IgG and IgA antibodies against B. forsythus were found in the sera of patients with RA than in the plasma of the CTR group. This indicates the presence of an active antibody response in synovial tissue and illustrates a potential connection between periodontal and joint diseases.


2021 ◽  
Vol 10 (17) ◽  
pp. 3817
Author(s):  
Alexandre Vallée ◽  
Marc Vasse ◽  
Laurence Mazaux ◽  
Brigitte Bonan ◽  
Carline Amiel ◽  
...  

Background: There is a small amount of immunological data on COVID-19 heterologous vaccination schedules in humans. We assessed the immunogenicity of BNT162b2 (Pfizer/BioNTech) administered as a second dose in healthcare workers primed with ChAdOx1-S (Vaxzevria, AstraZeneca). Methods: 197 healthcare workers were included in a monocentric observational study in Foch hospital, France, between June and July 2021. The main outcome was the immunogenicity measured by serum SARS-CoV-2 IgG antibodies. Results: 130 participants received the ChAdOx1-S/BNT vaccine and 67 received the BNT/BNT vaccine. The geometric mean of IgG antibodies was significantly higher in the BNT/BNT vaccine group compared to the ChAdOx1-S/BNT vaccine group, namely 10,734.9, 95% CI (9141.1–12,589.3) vs. 7268.6, 95% CI (6501.3–8128.3), respectively (p < 0.001). However, after adjustment for time duration between the prime and second vaccinations, no significant difference was observed (p = 0.181). A negative correlation between antibody levels and time duration between second dose and serology test was observed for the BNT/BNT vaccine (p < 0.001), which remained significant after adjustment for all covariates (p < 0.001), but not for the ChAdOx1-S/BNT vaccine (p = 0.467). Conclusions: Heterologous and homologous schedules of ChAdOx1-S and BNT vaccines present robust immune responses after the second vaccination. The results observed were equivalent after adjustment for covariates and emphasize the importance of flexibility in deploying mRNA and viral vectored vaccines. Nevertheless, applying the ChAdOx1-S schedule vaccination for the heterologous second dose of BNT was associated with decreased IgG antibody levels compared to the homologous BNT/BNT vaccination.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 516
Author(s):  
Shuyi Yang ◽  
Keith R. Jerome ◽  
Alexander L. Greninger ◽  
Joshua T. Schiffer ◽  
Ashish Goyal

While SARS-CoV-2 specific neutralizing antibodies have been developed for therapeutic purposes, the specific viral triggers that drive the generation of SARS-CoV-2 specific IgG and IgM antibodies remain only partially characterized. Moreover, it is unknown whether endogenously derived antibodies drive viral clearance that might result in mitigation of clinical severity during natural infection. We developed a series of non-linear mathematical models to investigate whether SARS-CoV-2 viral and antibody kinetics are coupled or governed by separate processes. Patients with severe disease had a higher production rate of IgG but not IgM antibodies. Maximal levels of both isotypes were governed by their production rate rather than different saturation levels between people. Our results suggest that an exponential surge in IgG levels occurs approximately 5–10 days after symptom onset with no requirement for continual antigenic stimulation. SARS-CoV-2 specific IgG antibodies appear to have limited to no effect on viral dynamics but may enhance viral clearance late during primary infection resulting from the binding effect of antibody to virus, rather than neutralization. In conclusion, SARS-CoV-2 specific IgG antibodies may play only a limited role in clearing infection from the nasal passages despite providing long-term immunity against infection following vaccination or prior infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tiandan Xiang ◽  
Boyun Liang ◽  
Yaohui Fang ◽  
Sihong Lu ◽  
Sumeng Li ◽  
...  

Major advances have been made in understanding the dynamics of humoral immunity briefly after the acute coronavirus disease 2019 (COVID-19). However, knowledge concerning long-term kinetics of antibody responses in convalescent patients is limited. During a one-year period post symptom onset, we longitudinally collected 162 samples from 76 patients and quantified IgM and IgG antibodies recognizing the nucleocapsid (N) protein or the receptor binding domain (RBD) of the spike protein (S). After one year, approximately 90% of recovered patients still had detectable SARS-CoV-2-specific IgG antibodies recognizing N and RBD-S. Intriguingly, neutralizing activity was only detectable in ~43% of patients. When neutralization tests against the E484K-mutated variant of concern (VOC) B.1.351 (initially identified in South Africa) were performed among patients who neutralize the original virus, the capacity to neutralize was even further diminished to 22.6% of donors. Despite declining N- and S-specific IgG titers, a considerable fraction of recovered patients had detectable neutralizing activity one year after infection. However, neutralizing capacities, in particular against an E484K-mutated VOC were only detectable in a minority of patients one year after symptomatic COVID-19. Our findings shed light on the kinetics of long-term immune responses after natural SARS-CoV-2 infection and argue for vaccinations of individuals who experienced a natural infection to protect against emerging VOC.


2021 ◽  
Author(s):  
Raymond T. Suhandynata ◽  
Nicholas J. Bevins ◽  
Jenny T. Tran ◽  
Deli Huang ◽  
Melissa A. Hoffman ◽  
...  

AbstractBackgroundThe severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 110 million individuals and led to 2.5 million deaths worldwide. As more individuals are vaccinated, the clinical performance and utility of SARS-CoV-2 serology platforms needs to be evaluated.MethodsThe ability of four commercial SARS-CoV-2 serology platforms to detect previous infection or vaccination were evaluated using a cohort of 53 SARS-CoV-2 PCR-positive patients, 89 SARS-CoV-2-vaccinated healthcare workers (Pfizer or Moderna), and 127 SARS-CoV-2 negative patients. Serology results were compared to a cell based SARS-CoV-2 pseudovirus (PSV) neutralizing antibodies assay.ResultsThe Roche S-(spike) antibody and Diazyme neutralizing antibodies (NAbs) assays detected adaptive immune response in 100.0% and 90.1% of vaccinated individuals who received two-doses of vaccine (initial and booster), respectively. The Roche N-(nucleocapsid) antibody assay and Diazyme IgG assay did not detect adaptive immune response in vaccinated individuals. The Diazyme Nabs assay correlated with the PSV SARS-CoV-2 ID50 neutralization titers (R2= 0.70), while correlation of the Roche S-antibody assay was weaker (R2= 0.39). Median PSV SARS-CoV-2 ID50 titers more than doubled in vaccinated individuals who received two-doses of the Moderna vaccine (ID50: 597) compared to individuals that received a single dose (ID50: 284).ConclusionsThe Roche S-antibody and Diazyme NAbs assays robustly detected adaptive immune responses in SARS-CoV-2 vaccinated individuals and SARS-CoV-2 infected individuals. The Diazyme NAbs assay strongly correlates with the PSV SARS-CoV-2 NAbs in vaccinated individuals. Understanding the reactivity of commercially available serology platforms is important when distinguishing vaccination response versus natural infection.SummaryThe Roche S (spike protein)-antibody and Diazyme neutralizing-antibodies (NAbs) assays were evaluated for their clinical utility in the detection of SARS-CoV-2 related adaptive immune responses by testing SARS-CoV-2 PCR-confirmed patients, SARS-CoV-2-vaccinated individuals, and SARS-CoV-2-negative individuals. Commercial serology results were compared to results generated using a cell-based SARS-CoV-2 pseudovirus (PSV) NAbs assay and previously validated SARS-CoV-2 commercial serology assays (Roche N (nucleocapsid protein) antibody and Diazyme IgG). We demonstrate that the Roche S-antibody and Diazyme NAbs assays detected adaptive immune response in SARS-CoV-2 vaccinated individuals and the presence of SARS-CoV-2 PSV NAbs. The Roche S-antibody assay had an observed positive percent agreement (PPA) of 100% for individuals who received two doses of the Pfizer or Moderna vaccine. By contrast, the Roche N assay and Diazyme IgG assay did not detect vaccine adaptive immune responses. Our findings also indicate that the Diazyme NAbs assay correlates strongly with the levels of SARS-CoV-2 ID50 neutralization titers using the PSV Nab assay in vaccinated individuals.


Vaccines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 27 ◽  
Author(s):  
Yoshiaki Yamaji ◽  
Akihito Sawada ◽  
Yosuke Yasui ◽  
Takashi Ito ◽  
Tetsuo Nakayama

We previously reported that recombinant measles virus expressing the respiratory syncytial virus (RSV) fusion protein (F), MVAIK/RSV/F, induced neutralizing antibodies against RSV, and those expressing RSV-NP (MVAIK/RSV/NP) and M2-1 (MVAIK/RSV/M2-1) induced RSV-specific CD8+/IFN-γ+ cells, but not neutralizing antibodies. In the present study, MVAIK/RSV/F and MVAIK/RSV/NP were simultaneously administered to cotton rats and immune responses and protective effects were compared with MVAIK/RSV/F alone. Sufficient neutralizing antibodies against RSV and RSV-specific CD8+/IFN-γ+ cells were observed after re-immunization with simultaneous administration. After the RSV challenge, CD8+/IFN-γ+ increased in spleen cells obtained from the simultaneous immunization group in response to F and NP peptides. Higher numbers of CD8+/IFN-γ+ and CD4+/IFN-γ+ cells were detected in lung tissues from the simultaneous immunization group after the RSV challenge. No detectable RSV was recovered from lung homogenates in the immunized groups. Mild inflammatory reactions with the thickening of broncho-epithelial cells and the infiltration of inflammatory cells were observed in lung tissues obtained from cotton rats immunized with MVAIK/RSV/F alone after the RSV challenge. No inflammatory responses were observed after the RSV challenge in the simultaneous immunization groups. The present results indicate that combined administration with MVAIK/RSV/F and MVAIK/RSV/NP induces humoral and cellular immune responses and shows effective protection against RSV, suggesting the importance of cellular immunity.


2011 ◽  
Vol 18 (10) ◽  
pp. 1765-1769 ◽  
Author(s):  
Maria Zilma Andrade Rodrigues ◽  
Maria Fernanda Rios Grassi ◽  
Sanjay Mehta ◽  
Xing-Quan Zhang ◽  
Luana Leandro Gois ◽  
...  

ABSTRACTTo evaluate the effects of HIV on immune responses in cutaneous leishmaniasis (CL), we quantified cytokine levels from plasma and stimulated peripheral blood mononuclear cells (PBMCs) from individuals infected with HIV and/or CL. Gamma interferon (IFN-γ) and interleukin 13 (IL-13) levels and the ratio of IFN-γ to IL-10 produced in response to stimulation with solubleLeishmaniaantigens were significantly lower in HIV-Leishmania-coinfected patients than in CL-monoinfected patients.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 573-573
Author(s):  
Jian-Ming Li ◽  
Cynthia Giver ◽  
Doug McMillan ◽  
Wayne Harris ◽  
David L. Jaye ◽  
...  

Abstract Introduction: Impaired or inappropriate immune reconstitution after allogeneic bone marrow transplantation (BMT) can lead to infection, graft-versus-host disease (GvHD) and leukemia relapse. We have previously reported that BM contains two populations of dendritic cell (DC) subsets, CD11b+ DC and CD11b− DC, and that CD11b depleted donor BM promoted increased donor T-cell chimerism and increased graft-versus-leukemia (GvL) activity in C57BL/6 → B10BR transplants [BBMT, 2004, 10: 540]. To explore the mechanism by which CD11b-depletion improved allo-reactivity, we performed allogeneic hematopoietic cell transplants using defined populations of donor stem cells, DCs, and T-cells in a MHC mis-matched BMT model. Methods: We transplanted FACS purified populations of 50,000 GFP+ CD11b- DC or CD11b+ DC in combination with 5,000 FACS purified Lin- Sca-1+ c-kit+ hematopoietic stem cells (HSC) and 300,000 or 1,000,000 congenic spleen T-cells from C57BL/6 donors into C57BL/6[H-2Kb], B10BR[H-2Kk] and PL/J[H-2Ku] recipients. Proliferation of CFSE stained donor T-cells was measured at 72 hours post-transplant. FACS cytometric bead array and intracellular cytokine staining measured serum and intracellular cytokines in donor T-cells. Results: The initial proliferation and Ki-67 expression of CFSE labeled donor T-cells in allogeneic recipients were much higher than in syngeneic recipients (homeostatic proliferation). Confocal microscopy showed co-localization of donor DC subsets with donor T-cells in the recipient spleens at 3 and 10 days post-transplant. In the allogeneic transplant settings, donor T-cells co-transplanted with CD11b- DC showed increased IFN-γ synthesis at 3 and 10 days post-transplant compared to donor T-cells co-transplanted with HSC plus CD11b+ DC or HSC alone. Increased proliferation of donor T-cells led to increased donor T-cell chimerism at day 10, 30, 60, and day105 post-transplant among recipients of CD11b- DC compared to recipients of HSC alone or HSC plus CD11b+ DC (Figure 1). Transplantation of spleen T-cells and CD11b- DC did not increase GvHD, but was associated with full donor chimerism. In contrast, transplantation of allogeneic CD11b+ DC led to persistence and expansion of residual host T-cells (Figure 2), increased numbers of donor CD4+CD25++Foxp3+ T-cells, and higher serum level of IL-10 supporting early post-transplant expansion of donor T regulatory cells (Treg). Conclusions: Donor CD11b- DC promoted immune reconstitution by polarizing donor T-cells to Th1 immune responses associated with increased IFN-γ synthesis and donor T-cell proliferation, while donor CD11b+ DC suppressed immune reconstitution by inhibiting donor T-cell allogeneic immune responses. These data support a novel paradigm for the regulation of post-transplant immunity and suggest clinical methods to test the hypothesis that manipulation of the DC content of a hematopoietic cell allograft regulates post transplant immunity in the clinical setting. Figure 1. Donor Spleen Derived T-cells in Peripheral Blood [* p<0.05, v.s. recipients of HSC plus CD11b(+)DC and spleen T-cells] Figure 1. Donor Spleen Derived T-cells in Peripheral Blood [* p<0.05, v.s. recipients of HSC plus CD11b(+)DC and spleen T-cells] Figure 2. Host Derived T-cells in Peripheral Blood [* p<0.05, v.s. recipients of HSC plus CD11b(-)DC and spleen T-cells] Figure 2. Host Derived T-cells in Peripheral Blood [* p<0.05, v.s. recipients of HSC plus CD11b(-)DC and spleen T-cells]


2003 ◽  
Vol 10 (3) ◽  
pp. 426-430 ◽  
Author(s):  
Jan Kilhamn ◽  
Samuel B. Lundin ◽  
Hans Brevinge ◽  
Ann-Mari Svennerholm ◽  
Marianne Jertborn

ABSTRACT The capacity of an oral live attenuated Salmonella enterica serovar Typhi Ty21a vaccine to induce immune responses in patients who had undergone colectomies because of ulcerative colitis was evaluated, and these responses were compared with those of healthy volunteers. Purified CD4+ and CD8+ T cells from peripheral blood were stimulated in vitro by using the heat-killed Ty21a vaccine strain, and the proliferation and gamma interferon (IFN-γ) production were measured before and 7 or 8 days after vaccination. Salmonella-specific immunoglobulin A (IgA) and IgG antibody responses in serum along with IgA antibody responses in ileostomy fluids from the patients who had undergone colectomies were also evaluated. Three doses of vaccine given 2 days apart failed to induce proliferative T-cell responses in all the six patients who had undergone colectomies, and increases in IFN-γ production were found only among the CD8+ cells from three of the patients. In contrast, both proliferative responses and increased IFN-γ production were observed among CD4+ and CD8+ T cells from 3 and 6 of 10 healthy volunteers, respectively. Salmonella-specific IgA and/or IgG antibody responses in serum were observed for five (56%) of nine patients who had undergone colectomies and in 15 (88%) of 17 healthy volunteers. In ileostomy fluids, significant anti-Salmonella IgA antibody titer increases were detected in six (67%) of nine patients who had undergone colectomies. The impaired T- and B-cell immune responses found after vaccination in the circulation of patients who have undergone colectomies may be explained by a diminished colonization of the Ty21a vaccine strain due to the lack of a terminal ileum and colon.


Sign in / Sign up

Export Citation Format

Share Document