scholarly journals Extracts From Red Eggplant: Impact of Ohmic Heating and Different Extraction Solvents on the Chemical Profile and Bioactivity

2021 ◽  
Vol 5 ◽  
Author(s):  
Pedro Ferreira-Santos ◽  
Anna Barbara Duca ◽  
Zlatina Genisheva ◽  
Beatriz Nunes Silva ◽  
Filomena De Biasio ◽  
...  

Eggplants contain a multitude of biocompounds with nutritional and/or biological activities. The objective of this work was to study the nutritional, chemical and bioactive value of red eggplant from Rotonda, Italy. Ohmic heating (OH) was compared to conventional heating, as different solvents were used (water, ethanol 30, 50, and 90% and methanol) for biocompounds extraction. Extracts were evaluated for their total phenolic compounds, antioxidant and antibacterial activities, and its toxicity was assessed in cells, L929 and Caco-2. The nutritional characterization of Rotonda's eggplant demonstrated that it is rich in carbohydrates (65%), fiber (12.5%), proteins (13%), lipids (7.6%) and minerals. Potassium is the mineral with the highest concentration in the red eggplant (27.24 mg/g). Phenolic composition of the obtained extracts was dependent on the extraction method, as well as on the solvent. The use of OH method increased the extraction of biocompounds, especially when using 50% of ethanol as solvent. The main phenolic compounds found in the extracts of this eggplant variety were ellagic acid, p-coumaricic acid, epicatechin, narginin, taxifolin and kaempferol. Antioxidant activity was positively correlated with the total amounts of phenolics. Red Eggplant extracts showed activity against Gram-negative bacteria (E. coli and S. enterica), however, they did not demonstrate activity against Gram-positive bacteria. The extracts obtained did not show cytotoxic effects in fibroblast and colorectal studied cells. Ohmic heating is a sustainable technology that increases the extraction yield of biocompounds, with reduced energy consumption and the resulting extracts show low toxicity and high biological activity.

2018 ◽  
Vol 69 (8) ◽  
pp. 1976-1979
Author(s):  
Ioana Asofiei ◽  
Ioan Calinescu ◽  
Adina Ionuta Gavrila ◽  
Daniel Ighigeanu ◽  
Diana Martin

It was designed and built a laboratory experimental installation (LEI) for the microwave pretreatment of vegetable materials. To study the influence of microwave pretreatment on the total phenolic content (TPC), a conventional extraction of polyphenols from treated and untreated fresh sea buckthorn leaves was performed. For short extraction times, the amount of phenolic compounds was higher for the extracts obtained from treated leaves, but a long pretreatment time (28 s) led to a decrease in TPC. The qualitative analysis showed that the chemical composition is not affected by the microwave pretreatment.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1773
Author(s):  
Patchima Sithisarn ◽  
Piyanuch Rojsanga ◽  
Pongtip Sithisarn

Oroxylum indicum extracts from the seeds collected from Lampang and Pattani provinces in Thailand, and young fruits and flowers exhibited in vitro display antioxidant and antibacterial activities against clinically isolated zoonotic bacteria including Staphylococcus intermedius, Streptococcus suis, Pseudomonas aeruginosa, β-hemolytic Escherichia coli and Staphylococcus aureus. The orange crystals and yellow precipitates were obtained from the preparation processes of the seed extracts. The orange-red crystals from the seeds collected from Lampang province exhibited strong in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging effects (EC50 value = 25.99 ± 3.30 μg/mL) and antibacterial effects on S. intermedius and β-hemolytic E. coli while the yellow precipitate from the same source exhibited only antioxidant activity. Quantitative analysis of phytochemicals in O. indicum samples by spectrophotometric and HPLC techniques showed that they contained different amounts of total phenolic, total flavonoid and three major flavones; baicalin, baicalein and chrysin contents. Young fruit extract, which contained low amounts of flavone contents, still promoted antibacterial effects against the tested bacteria with IC50 values lower than 1 mg/mL and MIC values between 4 to 10 mg/mL in S. intermedius, S. aureus and S suis while higher IC50 and MIC values against P. aeruginosa and β-hemolytic E. coli were found. From scanning electron microscopy, the extract of the young fruit of O. indicum promoted morphological changes in the bacterial cells by disrupting the bacterial cell walls, inducing leakage of the cellular content, and generating the abnormal accumulation of cells. The mechanism of action of the extract for this antibacterial effect may be the disruption of the cell membrane and abnormal cell aggregations. Regression analysis of the results suggests the correlation between total phenolic and total flavonoid contents and antioxidant and antibacterial effects. Baicalin was found to have a high correlation with an inhibitory effect against β-hemolytic E. coli while three unidentified peaks, which could be flavones, showed high correlations with an inhibitory effect against S. intermedius, S. suis, P. aeruginosa and S. aureus.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2177 ◽  
Author(s):  
Mariem Saada ◽  
Hanen Falleh ◽  
Marcelo Catarino ◽  
Susana Cardoso ◽  
Riadh Ksouri

This work focuses on the variability of Retama raetam (Forssk.) Webb bioactive compounds as a function of the plant cycle. The main results showed that it exhibited the highest percentage of polyunsaturated fatty acids, along with superior levels of vitamin C and total phenolic compounds (66.49%, 645.6 mg·100 g−1 FW and 23.9 mg GAE·g−1, respectively) at the vegetative stage. Instead, at the flowering and mature fruiting stages, R. raetam (Forssk.) Webb exhibited notable contents of proline (25.4 μmol·g−1 DW) and carotenoids (27.2 μg·g−1 FW), respectively. The gathered data concerning the antioxidant activity highlighted the effectiveness of the vegetative stage in comparison to the other periods. Actually, IC50 and EC50 values of the hydromethanolic extract obtained from the plant shoots at the vegetative stage were of 23, 380, 410, 1160 and 960 μg·mL−1 (DPPH• and ABTS•+ radicals scavenging activity, reducing power, chelating power and β-carotene bleaching activity, respectively). Furthermore, the four studied stages showed appreciable antibacterial capacities against human pathogens with a higher efficiency of the vegetative stage extract. Finally, the LC-DAD-ESI/MSn analysis revealed the predominance of isoflavonoids as main class of phenolic compounds and demonstrates that individual phenolic biosynthesis was clearly different as a function of plant growth. These findings highlight that reaching the optimum efficiency of R. raetam (Forssk.) Webb is closely linked to the physiological stage.


Nova Scientia ◽  
2020 ◽  
Vol 12 (24) ◽  
Author(s):  
Rey David Vargas Sánchez ◽  
Evelin Martínez Benavidez ◽  
Javier Hernández ◽  
Gastón Ramón Torrescano Urrutia ◽  
Armida Sánchez Escalante

In this study the effect of pollen source (mesquite and catclaw) on the sensory characteristics (appearance, color, aroma, taste, consistency and visible impurities), and physicochemical properties of raw propolis, and the phenolic content and biological activities of propolis extracts (PEs) was determined. The phenolic composition of PEs was determined by the total phenolic (TPC), flavone and flavonol (FFC), and flavanone and dihydroflavonol content (FDC). The individual phenolic components were analyzed by HPLC-DAD. The antioxidant activity was determined by the ferric-reducing power (FRAP) and free-radical scavenging activity (FRS). The antibacterial activity was evaluated against Gram-positive (Staphylococcus aureus and Listeria innocua) and Gram-negative (Echerichia coli and Salmonella thyphimurium) bacteria. The results showed that sensory characteristic and physicochemical properties of mesquite and catclaw propolis complied with international quality regulations. Fifteen phenolic compounds were identified, of which pinocembrin, naringenin, galangin, chrysin and quercetin were found a high concentration (> 3 mg/g). Mesquite propolis had the highest phenolic content (TFC and FDC), as well as antioxidant activity (> 2.5 mg Fe (II) equivalent/g; > 40% of DPPH radical inhibition) and antibacterial activity against Gram-positive bacterias in the order S. aureus > L. innocua (> 50% of inhibition for both bacterias at 500 µg/mL). These results indicating that pollen source affect the sensory characteristics and physicochemical properties of propolis, as well as the biological activity of their extracts.


2021 ◽  
Author(s):  
Rania Jacob ◽  
Hazem Hassan ◽  
Adel Afify ◽  
Gamal Gabr

Abstract Leather industries covers a wide chain of production and indirectly contributes to the economic flow. The different stages used in leather processing led to produce huge solid waste volumes. Because of the great effectiveness of amino acids as naturally chelates for minerals, the present study was carried out to recycling leather waste into its protein hydrolysate by CaO hydrolysis. The Leather protein hydrolysates (LPHs) was used to prepare metal-leather protein hydrolysate chelates (Cu2+-, Zn2+-& Fe2+-LPHCs) and some of their physical properties (i.e. λ-max, FTIR spectra, color, melting point) and biochemical properties as its antibacterial activity, as well as using as micronutrient elements for plant were evaluated. Results showed that the Cu2+-LPHC gave the highest value of melting point and λ-max than other chelates. All chelates shifted the vibration bands toward a higher frequency than LPH/CaO. Metal-leather protein hydrolysate (M-LPHCs) had antibacterial activities against E. coli, B. cereus and Micrococcus spp. mostly with Zn-LPHC and Fe-LPHC. These complexes also increased the growth characteristics and mineral absorption of spinach plants in hydroponic nutrient solution than that of mineral salts (CuSO4, ZnSO4 and FeSO4). Finally, the study concluded that M-LPHCs can be used as antimicrobial agent, micronutrients for plant and support the minerals bioavailability in animals.


2016 ◽  
Vol 6 (2) ◽  
pp. 70-76
Author(s):  
Soumia Keddari ◽  
Narimen Benaoum ◽  
Yasmina Mokhtaria Boufadi ◽  
Mansouria Belhocine ◽  
Ali Riazi

Medicinal plants have been used for countries as cures for human diseases because they contain components of therapeutic value. Among these medi-cinal plants, Ammi visnage which have an immense reservoir of potential compounds attributed to the secondary metabolites which have the advan-tage of being of great diversity of chemical structure and have a very wide range of biological activities. The objectives of the present work were to stu-dy the antioxidant and antimicrobial activity of phenolic compounds ex-tracted from A. visnaga L. Its extraction is performed by two methods, etha-nol extraction and water extraction. The results showed that A. visnaga L.. ethanolic extract contains a mixture of phytochemical classes as polyphenol, flavonoids and revealed that this plant has high antioxidant activity (IC50 0.069 mg/ml). Regarding the antimicrobial activity results expressed by the diameter of the inhibition zones by diffusion method AWDT, the most signifi-cant inhibition was observed against to Staphylococcus aureus (12 mm) to the ethanol extract at concentration of 100mg / ml. Thus the aqueous ex-tract had a significant inhibitory activity against on the strains Staphylococ-cus aureus (8 mm), E. coli ATCC 10536 (8 mm) to a concentration of 100 mg / ml. The results for the antibacterial properties have shown that Gram-positive bacteria (Staphylococcus aureus, Listeria monocytogenes and M. luteus.) were more sensitive than gram-negative (Pseudomonas aeruginosa, E. coli ATCC 10536) against from the action of phenolic compounds of the Ammi visnaga ethanolic extract.


Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 389 ◽  
Author(s):  
Adane Tilahun Getachew ◽  
Charlotte Jacobsen ◽  
Susan Løvstad Holdt

Natural phenolic compounds are important classes of plant, microorganism, and algal secondary metabolites. They have well-documented beneficial biological activities. The marine environment is less explored than other environments but have huge potential for the discovery of new unique compounds with potential applications in, e.g., food, cosmetics, and pharmaceutical industries. To survive in a very harsh and challenging environment, marine organisms like several seaweed (macroalgae) species produce and accumulate several secondary metabolites, including marine phenolics in the cells. Traditionally, these compounds were extracted from their sample matrix using organic solvents. This conventional extraction method had several drawbacks such as a long extraction time, low extraction yield, co-extraction of other compounds, and usage of a huge volume of one or more organic solvents, which consequently results in environmental pollution. To mitigate these drawbacks, newly emerging technologies, such as enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE) have received huge interest from researchers around the world. Therefore, in this review, the most recent and emerging technologies are discussed for the extraction of marine phenolic compounds of interest for their antioxidant and other bioactivity in, e.g., cosmetic and food industry. Moreover, the opportunities and the bottleneck for upscaling of these technologies are also presented.


2020 ◽  
Vol 840 ◽  
pp. 265-269
Author(s):  
Nurjanah Nurjanah ◽  
Endang Saepudin

Curcumin, a diarylheptanoids compound which isolated primary from Curcuma longa, exhibits a variety of exciting biological activities, including as an antibacterial agent. In the present study, a sulfanilamide-contained curcumin compound was synthesized and characterized to investigate the antibacterial activity against gram-positive bacteria S. aureus, B. subtilis and gram-negative bacteria E. coli. The characterization of the synthesized compound was determined by analysing peak absorbance, functional group, and molecular weight using mass spectroscopy, UV/Vis and FTIR spectrophotometry. Curcumin-sulfanilamide compound exhibited the best antibacterial activity against gram-negative bacteria compared to curcumin and the curcumin-derived compound containing isoxazole with inhibitory zone of 11 mm.


2014 ◽  
Vol 9 (6) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Rui Jiang ◽  
Liwei Sun ◽  
Yanbing Wang ◽  
Jianzeng Liu ◽  
Xiaodan Liu ◽  
...  

Panax ginseng C.A.Meyer is one of the most valuable traditional Chinese medicines. In this study, the essential oil of ginseng leaves (EOGL), collected using hydrodistillation and analyzed by GC/MS, contained a complex mixture of aliphatic (69.0%), terpenoid (21.5%) and aromatic compounds (2.4%). Among 54 components identified, the major ones were palmitic acid (36.1%), β-farnesene (15.4%), linoleic acid (9.8%) and phytol (5.6%). In the cytotoxicity study, EOGL exhibited obvious cytotoxic activities against different cancer cell lines, including Hela, A549, ZR-75-1, HT-29, SGC7901 and B16 cells. Furthermore, Annexin V-FITC/PI staining assay indicated that EOGL can induce late apoptosis of ZR-75-1 cells, and the percentage of apoptotic cells increased in a concentration-dependent manner (0.9% to 5.6% and 67.4%). In addition to this, we also found that EOGL exhibited weak DPPH radical scavenging (12.0 ± 0.4 mg/mL) and ABTS radical scavenging activities (1.6 ± 0.1 mg/mL), and showed antibacterial activity against the Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, and the Gram-negative bacterium, Escherichia coli. The data suggest that EOGL, which possesses important biological activities, especially significant anticancer activity, could be a potential medicinal resource.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Mohd Fadzelly Abu Bakar ◽  
Nur Amalina Ismail ◽  
Azizul Isha ◽  
Angelina Lee Mei Ling

Berries, from the genusRubus, are among the vital components in a healthy diet. In this study, 80% methanol extracts from the three wildRubusspecies (Rubus moluccanusL.,Rubus fraxinifoliusPoir., andRubus alpestrisBlume) were evaluated for their phytochemical contents (total phenolics, flavonoid, anthocyanin, and carotenoid content), antioxidant (DPPH, FRAP, and ABTS assays), antiacetylcholinesterase, and antibacterial activities. GC-MS was used for quantification of naturally occurring phytochemicals. The results showed thatR. alpestriscontained the highest total phenolic [24.25±0.1 mg gallic acid equivalent (GAE)/g] and carotenoid content [21.86±0.63 mgβ-carotene equivalents (BC)/g], as well as the highest DPPH scavenging and FRAP activities. The highest total flavonoid [18.17±0.20 mg catechin equivalents (CE)/g] and anthocyanin content [36.96±0.39 mg cyanidin-3-glucoside equivalents (c-3-gE)/g] have been shown byR. moluccanus. For antibacterial assays,R. moluccanusandR. alpestrisextracts showed mild inhibition towardsBacillus subtilis,Staphylococcus aureus,Escherichia coli, andSalmonella enteritidis. Anticholinesterase activity for all extracts was in the range of 23–26%. The GC-MS analysis revealed the presence of at least 12, 21, and 7 different organic compounds in 80% methanol extracts ofR. alpestris,R. moluccanus, andR. fraxinifolius, respectively, which might contribute to the bioactivity.


Sign in / Sign up

Export Citation Format

Share Document