scholarly journals Exogenous Fecal Microbial Transplantation Alters Fearfulness, Intestinal Morphology, and Gut Microbiota in Broilers

2021 ◽  
Vol 8 ◽  
Author(s):  
Chao Yan ◽  
Jinlong Xiao ◽  
Zhiwei Li ◽  
Hao Liu ◽  
Xinjie Zhao ◽  
...  

Fecal microbiota transplantation (FMT) documented transplanting a donor fecal sample to a receipt individual for a desired physiologic effect. However, whether the gut microbiota construction, intestinal maturation, and behavioral plasticity are modulated by FMT during the early life of broilers is waiting for verification. To evaluate the role of transfer of fecal microbiota from aged broilers donor (BD) to another individual, 96 birds were equally divided into a check (CK, control) group and a broiler recipient (BR) group. FMT was conducted daily from 5 to 12 days of age to determine the future impact on body weight, behavior, intestinal development, and gut microbiota. Results indicated that fearfulness in the CK group was higher than the BR group in both the behavioral tests (p < 0.05). The muscularis mucosa, thickness of muscle layer, and thickness of serous membrane layer in the BR group were higher compared with those of the CK group in the jejunum (p < 0.05). In the gut microbiota, Shannon diversity showed no difference, while beta diversity presented a difference in principal coordination analysis (PCoA) between the CK and BR groups. At the phylum level, the relative abundance of Lentisphaerae in the CK group was lower than the BR (p = 0.052) and BD (p = 0.054) groups. The relative abundance of Tenericutes in the BD group was higher than that in the CK and BR groups (p < 0.05). At the genus level, Megamonas in the CK group was higher than the BR (p = 0.06) and BD (p < 0.05) groups. In the BR group, the functional capabilities of microbial communities analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were increased in the glutamatergic synapse and N-glycan biosynthesis pathways in comparison with the CK and BD groups (p < 0.05). Some characteristics of gut microbiota in the donor chickens could be transferred to recipient chickens by FMT. In conclusion, exogenous FMT as a probiotic-like administration might be an efficient way to improve the physiology and behavior of chickens. Notably, the role of microbiota for various individuals and periods remains undefined, and the mechanism of microbiota on behaviors still needs further investigation.

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 145
Author(s):  
Julio Plaza-Díaz ◽  
Patricio Solis-Urra ◽  
Jerónimo Aragón-Vela ◽  
Fernando Rodríguez-Rodríguez ◽  
Jorge Olivares-Arancibia ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver illness associated with obesity and metabolic disorders, such as hypertension, dyslipidemia, or type 2 diabetes mellitus. A more severe type of NAFLD, non-alcoholic steatohepatitis (NASH), is considered an ongoing global health threat and dramatically increases the risks of cirrhosis, liver failure, and hepatocellular carcinoma. Several reports have demonstrated that liver steatosis is associated with the elevation of certain clinical and biochemical markers but with low predictive potential. In addition, current imaging methods are inaccurate and inadequate for quantification of liver steatosis and do not distinguish clearly between the microvesicular and the macrovesicular types. On the other hand, an unhealthy status usually presents an altered gut microbiota, associated with the loss of its functions. Indeed, NAFLD pathophysiology has been linked to lower microbial diversity and a weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defense and inflammation via toll-like receptor signaling. Moreover, this activation of inflammation in hepatocytes induces progression from simple steatosis to NASH. In the present review, we aim to: (a) summarize studies on both human and animals addressed to determine the impact of alterations in gut microbiota in NASH; (b) evaluate the potential role of such alterations as biomarkers for prognosis and diagnosis of this disorder; and (c) discuss the involvement of microbiota in the current treatment for NAFLD/NASH (i.e., bariatric surgery, physical exercise and lifestyle, diet, probiotics and prebiotics, and fecal microbiota transplantation).


2021 ◽  
Author(s):  
Yiyangzi Ma ◽  
Ruru Guo ◽  
Yiduo Sun ◽  
Xin Li ◽  
Lun He ◽  
...  

Background: The etiology of systemic lupus erythematosus (SLE) is multifactorial. Recently, growing evidence suggests that the microbiota plays a role in SLE, yet whether gut microbiota participates in the development of SLE remains largely unknown. To investigate this issue, we carried out 16s rDNA sequencing analyses in a cohort of 18 female un-treated active SLE patients and 7 female healthy controls, and performed fecal microbiota transplantation from patients and healthy controls to germ-free mice. Results: Compared to the healthy controls, we found no significant different microbial diversity but some significantly different species in SLE patients including Turicibacter genus and other 5 species. Fecal transfer from SLE patients to germ free (GF) C57BL/6 mice caused GF mice to develop a series of lupus-like phenotyptic features, which including an increased serum autoimmune antibodies, and imbalanced cytokines, altered distribution of immune cells in mucosal and peripheral immune response, and upregulated expression of genes related to SLE in recipient mice that received SLE fecal microbiota transplantation (FMT). Moreover, the metabolism of histidine was significantly altered in GF mice treated with SLE patient feces, as compared to those which received healthy fecal transplants. Conclusions: Overall, our results describe a causal role of aberrant gut microbiota in contributing to the pathogenesis of SLE. The interplay of gut microbial and histidine metabolism may be one of the mechanisms intertwined with autoimmune activation in SLE.


2019 ◽  
Vol 20 (18) ◽  
pp. 4584 ◽  
Author(s):  
Romain Villéger ◽  
Amélie Lopès ◽  
Guillaume Carrier ◽  
Julie Veziant ◽  
Elisabeth Billard ◽  
...  

Recently, preclinical and clinical studies targeting several types of cancer strongly supported the key role of the gut microbiota in the modulation of host response to anti-tumoral therapies such as chemotherapy, immunotherapy, radiotherapy and even surgery. Intestinal microbiome has been shown to participate in the resistance to a wide range of anticancer treatments by direct interaction with the treatment or by indirectly stimulating host response through immunomodulation. Interestingly, these effects were described on colorectal cancer but also in other types of malignancies. In addition to their role in therapy efficacy, gut microbiota could also impact side effects induced by anticancer treatments. In the first part of this review, we summarized the role of the gut microbiome on the efficacy and side effects of various anticancer treatments and underlying mechanisms. In the second part, we described the new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency.


2019 ◽  
Vol 28 (12) ◽  
pp. 1507-1527 ◽  
Author(s):  
Giovanni Schepici ◽  
Serena Silvestro ◽  
Placido Bramanti ◽  
Emanuela Mazzon

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, and degenerative disease that affects the central nervous system. A recent study showed that interaction between the immune system and the gut microbiota plays a crucial role in the development of MS. This review reports the clinical studies carried out in recent years that aimed to evaluate the composition of the microbiota in patients with relapsing–remitting MS (RR-MS). We also report what is available in the literature regarding the effectiveness of fecal microbiota transplantation and the role of the diet in restoring the intestinal bacterial population. Studies report that patients with RR-MS have a microbiota that, compared with healthy controls, has higher amounts of Pedobacteria, Flavobacterium, Pseudomonas, Mycoplana, Acinetobacter, Eggerthella, Dorea, Blautia, Streptococcus and Akkermansia. In contrast, MS patients have a microbiota with impoverished microbial populations of Prevotella, Bacteroides, Parabacteroides, Haemophilus, Sutterella, Adlercreutzia, Coprobacillus, Lactobacillus, Clostridium, Anaerostipes and Faecalibacterium. In conclusion, the restoration of the microbial population in patients with RR-MS appears to reduce inflammatory events and the reactivation of the immune system.


2018 ◽  
Author(s):  
Jiayi He ◽  
Lingyi Wu ◽  
Zhen Wu ◽  
Daodong Pan ◽  
Yuxing Guo ◽  
...  

AbstractProbiotic candidateL. reuteriwas screened out forin vivoexperiments based on a relatively higher gastrointestinal tolerance and moderate adhesiveness. As results shown inin-vivoexperiments, a significantly higher level of IL-12 at low-dose group was found both in females and males. Higher levels of T-lymphocytes were also observed in females compared to control group, however, males displayed a reduction expcept for CD8-positive cells in ileum. In comparison to the control group, the relative abundance of phylotypes in the phylumBacteroidetes(genus ofBacteroides,Prevotella) andFirmicutes(genus ofClostridiumIV) exihibited a reserve shift between sexes afterL. reuteriintervened. Meanwhile, the relative abundance of several taxa (Acetobacteroides,Lactobcaillus,bacillus) also differed markedly in sexes at low-dose group, together with microbiota diversity, as indicated by Shannon index.ImportanceSexual dimorphism has triggered researchers’ attention. However, the relationship between immune parameters and gut microbiota caused byLactobacillusat different dosage are not fully elucidated. In present research, the possible probiotic role ofL. reuteriDMSZ 8533 on immunomodulation and effect on fecal microbiota composition were investigated. Our findings demonstrate the importance of L. reuteri DMSZ 8533 as a potential probiotic strain with an immunomodulatory effect, which also alters the microflora composition depending on the sex of the host.


2015 ◽  
Vol 83 (10) ◽  
pp. 3838-3846 ◽  
Author(s):  
Anna M. Seekatz ◽  
Casey M. Theriot ◽  
Caitlyn T. Molloy ◽  
Katherine L. Wozniak ◽  
Ingrid L. Bergin ◽  
...  

RecurrentClostridium difficileinfection (CDI) is of particular concern among health care-associated infections. The role of the microbiota in disease recovery is apparent given the success of fecal microbiota transplantation (FMT) for recurrent CDI. Here, we present a murine model of CDI relapse to further define the microbiota recovery following FMT. Cefoperazone-treated mice were infected withC. difficile630 spores and treated with vancomycin after development of clinical disease. Vancomycin treatment suppressed bothC. difficilecolonization and cytotoxin titers. However,C. difficilecounts increased within 7 days of completing treatment, accompanied by relapse of clinical signs. The administration of FMT immediately after vancomycin clearedC. difficileand decreased cytotoxicity within 1 week. The effects of FMT on the gut microbiota community were detectable in recipients 1-day posttransplant. Conversely, mice not treated with FMT remained persistently colonized with high levels ofC. difficile, and the gut microbiota in these mice persisted at low diversity. These results suggest that full recovery of colonization resistance againstC. difficilerequires the restoration of a specific community structure.


2020 ◽  
Vol 64 (1) ◽  
Author(s):  
Elvira Anna Carbone ◽  
Pasquale D'Amato ◽  
Giuseppe Vicchio ◽  
Pasquale De Fazio ◽  
Cristina Segura-Garcia

Abstract Background There is growing interest in new factors contributing to the genesis of eating disorders (EDs). Research recently focused on the study of microbiota. Dysbiosis, associated with a specific genetic susceptibility, may contribute to the development of anorexia nervosa (AN), bulimia nervosa, or binge eating disorder, and several putative mechanisms have already been identified. Diet seems to have an impact not only on modification of the gut microbiota, facilitating dysbiosis, but also on its recovery in patients with EDs. Methods This systematic review based on the PICO strategy searching into PubMed, EMBASE, PsychINFO, and Cochrane Library examined the literature on the role of altered microbiota in the pathogenesis and treatment of EDs. Results Sixteen studies were included, mostly regarding AN. Alpha diversity and short-chain fatty acid (SCFA) levels were lower in patients with AN, and affective symptoms and ED psychopathology seem related to changes in gut microbiota. Microbiota-derived proteins stimulated the autoimmune system, altering neuroendocrine control of mood and satiety in EDs. Microbial richness increased in AN after weight regain on fecal microbiota transplantation. Conclusions Microbiota homeostasis seems essential for a healthy communication network between gut and brain. Dysbiosis may promote intestinal inflammation, alter gut permeability, and trigger immune reactions in the hunger/satiety regulation center contributing to the pathophysiological development of EDs. A restored microbial balance may be a possible treatment target for EDs. A better and more in-depth characterization of gut microbiota and gut–brain crosstalk is required. Future studies may deepen the therapeutic and preventive role of microbiota in EDs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sanwang Wang ◽  
Hongliang Chen ◽  
Xin Wen ◽  
Jingjing Mu ◽  
Mingyue Sun ◽  
...  

Objective. To study the protective effect of fecal microbiota transplantation (FMT) on experimental autoimmune encephalomyelitis (EAE) and reveal its potential intestinal microflora-dependent mechanism through analyses of the intestinal microbiota and spinal cord transcriptome in mice. Method. We measured the severity of disease by clinical EAE scores and H&E staining. Gut microbiota alteration in the gut and differentially expressed genes (DEGs) in the spinal cord were analyzed through 16S rRNA and transcriptome sequencing. Finally, we analyzed associations between the relative abundance of intestinal microbiota constituents and DEGs. Results. We observed that clinical EAE scores were lower in the EAE+FMT group than in the EAE group. Meanwhile, mice in the EAE+FMT group also had a lower number of infiltrating cells. The results of 16S rRNA sequence analysis showed that FMT increased the relative abundance of Firmicutes and Proteobacteria and reduced the abundance of Bacteroides and Actinobacteria. Meanwhile, FMT could modulate gut microbiota balance, especially via increasing the relative abundance of g_Adlercreutzia, g_Sutterella, g_Prevotella_9, and g_Tyzzerella_3 and decreasing the relative abundance of g_Turicibacter. Next, we analyzed the transcriptome of mouse spinal cord tissue and found that 1476 genes were differentially expressed between the EAE and FMT groups. The analysis of these genes showed that FMT mainly participated in the inflammatory response. Correlation analysis between gut microbes and transcriptome revealed that the relative abundance of Adlercreutzia was correlated with the expression of inflammation-related genes negatively, including Casp6, IL1RL2 (IL-36R), IL-17RA, TNF, CCL3, CCR5, and CCL8, and correlated with the expression of neuroprotection-related genes positively, including Snap25, Edil3, Nrn1, Cpeb3, and Gpr37. Conclusion. Altogether, FMT may selectively regulate gene expression to improve inflammation and maintain the stability of the intestinal environment in a gut microbiota-dependent manner.


2020 ◽  
Vol 318 (6) ◽  
pp. E965-E980 ◽  
Author(s):  
Arianne Morissette ◽  
Camille Kropp ◽  
Jean-Philippe Songpadith ◽  
Rafael Junges Moreira ◽  
Janice Costa ◽  
...  

Blueberry consumption can prevent obesity-linked metabolic diseases, and it has been proposed that the polyphenol content of blueberries may contribute to these effects. Polyphenols have been shown to favorably impact metabolic health, but the role of specific polyphenol classes and whether the gut microbiota is linked to these effects remain unclear. We aimed to evaluate the impact of whole blueberry powder and blueberry polyphenols on the development of obesity and insulin resistance and to determine the potential role of gut microbes in these effects by using fecal microbiota transplantation (FMT). Sixty-eight C57BL/6 male mice were assigned to one of the following diets for 12 wk: balanced diet (Chow); high-fat, high-sucrose diet (HFHS); or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT)-rich extract, or proanthocyanidin (PAC)-rich extract. After 8 wk, mice were housed in metabolic cages, and an oral glucose tolerance test (OGTT) was performed. Sixty germ-free mice fed HFHS diet received FMT from one of the above groups biweekly for 8 wk, followed by an OGTT. PAC-treated mice were leaner than HFHS controls although they had the same energy intake and were more physically active. This observation was reproduced in germ-free mice receiving FMT from PAC-treated mice. PAC- and ANT-treated mice showed improved insulin responses during OGTT, and this finding was also reproduced in germ-free mice following FMT. These results show that blueberry PAC and ANT polyphenols can reduce diet-induced body weight and improve insulin sensitivity and that at least part of these beneficial effects are explained by modulation of the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document