scholarly journals Advances in Genomic Interventions for Wheat Biofortification: A Review

Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 62 ◽  
Author(s):  
Dinesh Kumar Saini ◽  
Pooja Devi ◽  
Prashant Kaushik

Wheat is an essential constituent of cereal-based diets, and one of the most significant sources of calories. However, modern wheat varieties are low in proteins and minerals. Biofortification is a method for increasing the availability of essential elements in the edible portions of crops through agronomic or genetic and genomic interventions. Wheat biofortification, as a research topic, has become increasingly prevalent. Recent accomplishments in genomic biofortification could potentially be helpful for the development of biofortified wheat grains, as a sustainable solution to the issue of “hidden hunger”. Genomic interventions mainly include quantitative trait loci (QTL) mapping, marker-assisted selection (MAS), and genomic selection (GS). Developments in the identification of QTL and in the understanding of the physiological and molecular bases of the QTLs controlling the biofortification traits in wheat have revealed new horizons for the improvement of modern wheat varieties. Markers linked with the QTLs of desirable traits can be identified through QTL mapping, which can be employed for MAS. Besides MAS, a powerful tool, GS, also has great potential for crop improvement. We have compiled information from QTL mapping studies on wheat, carried out for the identification of the QTLs associated with biofortification traits, and have discussed the present status of MAS and different prospects of GS for wheat biofortification. Accelerated mapping studies, as well as MAS and GS schemes, are expected to improve wheat breeding efficiency further.

Author(s):  
Pooja Devi ◽  
Prashant Kaushik ◽  
Dinesh Kumar Saini

Wheat is the essential constituent of cereal-based diets and one of the most significant sources of calories. However, there is an inherently low bioavailability of proteins, mineral, and vitamins in modern wheat grains. Biofortification has earned recognition as an outstanding approach, at the same time as a cure for world hunger. The developments in the identifications of quantitative trait loci (QTL) analysis and understanding of the physiological and molecular basis of QTLs controlling the biofortification traits in wheat has revealed new horizons for the improvement of modern wheat varieties. Within this review, we have compiled the information from the studies carried out in wheat using QTL mapping methodologies that is among the best methods for biofortification traits. We hope this review will serve as an essential reference for the QTLs identified for the several important biofortification traits in wheat.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1149
Author(s):  
Guglielmo Puccio ◽  
Rosolino Ingraffia ◽  
Dario Giambalvo ◽  
Gaetano Amato ◽  
Alfonso S. Frenda

Identifying genotypes with a greater ability to absorb nitrogen (N) may be important to reducing N loss in the environment and improving the sustainability of agricultural systems. This study extends the knowledge of variability among wheat genotypes in terms of morphological or physiological root traits, N uptake under conditions of low soil N availability, and in the amount and rapidity of the use of N supplied with fertilizer. Nine genotypes of durum wheat were chosen for their different morpho-phenological characteristics and year of their release. The isotopic tracer 15N was used to measure the fertilizer N uptake efficiency. The results show that durum wheat breeding did not have univocal effects on the characteristics of the root system (weight, length, specific root length, etc.) or N uptake capacity. The differences in N uptake among the studied genotypes when grown in conditions of low N availability appear to be related more to differences in uptake efficiency per unit of weight and length of the root system than to differences in the morphological root traits. The differences among the genotypes in the speed and the ability to take advantage of the greater N availability, determined by N fertilization, appear to a certain extent to be related to the development of the root system and the photosynthesizing area. This study highlights some variability within the species in terms of the development, distribution, and efficiency of the root system, which suggests that there may be sufficient grounds for improving these traits with positive effects in terms of adaptability to difficult environments and resilience to climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Basavalingayya K. Swamy ◽  
Ravikumar Hosamani ◽  
Malarvizhi Sathasivam ◽  
S. S. Chandrashekhar ◽  
Uday G. Reddy ◽  
...  

AbstractHypergravity—an evolutionarily novel environment has been exploited to comprehend the response of living organisms including plants in the context of extra-terrestrial applications. Recently, researchers have shown that hypergravity induces desired phenotypic variability in seedlings. In the present study, we tested the utility of hypergravity as a novel tool in inducing reliable phenotype/s for potential terrestrial crop improvement applications. To investigate, bread wheat seeds (UAS-375 genotype) were subjected to hypergravity treatment (10×g for 12, and 24 h), and evaluated for seedling vigor and plant growth parameters in both laboratory and greenhouse conditions. It was also attempted to elucidate the associated biochemical and hormonal changes at different stages of vegetative growth. Resultant data revealed that hypergravity treatment (10×g for 12 h) significantly enhanced root length, root volume, and root biomass in response to hypergravity. The robust seedling growth phenotype may be attributed to increased alpha-amylase and TDH enzyme activities observed in seeds treated with hypergravity. Elevated total chlorophyll content and Rubisco (55 kDa) protein expression across different stages of vegetative growth in response to hypergravity may impart physiological benefits to wheat growth. Further, hypergravity elicited robust endogenous phytohormones dynamics in root signifying altered phenotype/s. Collectively, this study for the first time describes the utility of hypergravity as a novel tool in inducing reliable root phenotype that could be potentially exploited for improving wheat varieties for better water usage management.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Pao Theen See ◽  
Caroline S. Moffat

After nearly 40 years of DNA molecular marker development in plant breeding, the wheat research community has amassed an extensive collection of molecular markers which have been widely and successfully used for selection of agronomic, physiological and disease resistance traits in wheat breeding programs. Tan spot is a major fungal disease of wheat and a significant global economic challenge and is caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr). Here, the potential for using a PCR-based marker (Ta1AS3422) present on the short arm of wheat chromosome 1A, was evaluated for effectiveness in distinguishing tan spot disease susceptibility. The marker was initially screened against 40 commercial Australian hexaploid wheat varieties, and those that amplified the marker had an overall lower disease score (2.8 ± 0.7 for seedlings and 2.4 ± 0.4 for plants at the tillering stage), compared to those lacking the marker which exhibited a higher disease score (3.6 ± 0.8 for both growth stages). The potential of Ta1AS3422 as a marker for the tan spot disease response was further assessed against a panel of 100 commercial Australian hexaploid wheat varieties. A significant association was observed between marker absence/presence and tan spot disease rating (Pearson’s chi-squared test, χ2 (6) = 20.53, p = 0.002), with absence of Ta1AS3422 associated with susceptibility. This simple and cost-effective PCR-based marker may be useful for varietal improvement against tan spot, although further work is required to validate its effectiveness.


2019 ◽  
Vol 17 (04) ◽  
pp. 386-389
Author(s):  
Miguel Bento ◽  
Sónia Gomes Pereira ◽  
Wanda Viegas ◽  
Manuela Silva

AbstractAssessing durum wheat genomic diversity is crucial in a changing environmental particularly in the Mediterranean region where it is largely used to produce pasta. Durum wheat varieties cultivated in Portugal and previously assessed regarding thermotolerance ability were screened for the variability of coding sequences associated with technological traits and repetitive sequences. As expected, reduced variability was observed regarding low molecular weight glutenin subunits (LMW-GS) but a specific LMW-GS allelic form associated with improved pasta-making characteristics was absent in one variety. Contrastingly, molecular markers targeting repetitive elements like microsatellites and retrotransposons – Inter Simple Sequence Repeat (ISSR) and Inter Retrotransposons Amplified Polymorphism (IRAP) – disclosed significant inter and intra-varietal diversity. This high level of polymorphism was revealed by the 20 distinct ISSR/IRAP concatenated profiles observed among the 23 individuals analysed. Interestingly, median joining networks and PCoA analysis grouped individuals of the same variety and clustered varieties accordingly with geographical origin. Globally, this work demonstrates that durum wheat breeding strategies induced selection pressure for some relevant coding sequences while maintaining high levels of genomic variability in non-coding regions enriched in repetitive sequences.


1980 ◽  
Vol 95 (1) ◽  
pp. 29-34 ◽  
Author(s):  
J. A. Blackman ◽  
A. A. Gill

SummaryTwenty-five winter wheat varieties and breeders' lines including hard and soft texture, good or poor bread and biscuit-making types were grown at two locations in the U.K. in 1977 to provide the test samples. Small-scale tests of bread-making quality including extensometer, sodium dodecyl sulphate (SDS) sedimentation volume, residue protein, urea dispersible protein and Pelshenke tests, were compared with loaf volumes and loaf scores.Averaged over the two sites, a modified extensometer test and the SDS test gave the closest correlation with loaf volume and loaf score and were only poorly correlated with Hagberg Falling Number and percentage protein. The SDS test gave the closest correlation between sites followed by the extensometer readings; loaf volume and score had much lower values. The SDS values and extensometer readings give a better measure of the genetic differences in protein quality of varieties than loaf volume and score, being less affected by growing conditions. With its small sample size and high throughput, the SDS sedimentation volume is likely to be the most useful screening test for wheat breeding programmes.


2018 ◽  
Vol 48 (4) ◽  
Author(s):  
Tianqing Chen ◽  
Piyada Alisha Tantasawat ◽  
Wei Wang ◽  
Xu Gao ◽  
Liyi Zhang

ABSTRACT: Understanding genetic variability in existing wheat accessions is critical for collection, conservation and use of wheat germplasms. In this study, 138 Chinese southwest wheat accessions were investigated by genotyping using two resistance gene makers (Pm21 and Yr26) and DArT-seq technique. Finally, about 50% cultivars (lines) amplified the specific allele for the Yr26 gene (Gwm11) and 40.6% for the Pm21 gene (SCAR1265). By DArT-seq analysis, 30,485 markers (6486 SNPs and 23999 DArTs) were obtained with mean polymorphic information content (PIC) value 0.33 and 0.28 for DArT and SNP marker, respectively. The mean Dice genetic similarity coefficient (GS) was 0.72. Two consistent groups of wheat varieties were identified using principal coordinate analysis (PCoA) at the level of both the chromosome 6AS and the whole-genome, respectively. Group I was composed of non-6VS/6AL translocation lines of different origins, while Group II was composed of 6VS/6AL translocation (T6VS/6AL) lines, most of which carried the Yr26 and Pm21 genes and originated from Guizhou. Besides, a model-based population structure analysis revealed extensive admixture and further divided these wheat accessions into six subgroups (SG1, SG2, SG3, SG4, SG5 and SG6), based on their origin, pedigree or disease resistance. This information is useful for wheat breeding in southwestern China and association mapping for disease resistance using these wheat germplasms in future.


Author(s):  
Akbar Hossain ◽  
MAZ Sarker ◽  
MA Hakim ◽  
MV Lozovskaya ◽  
VP Zvolinsky

Eight modern wheat varieties (viz., Sourav, Gourab, Shatabdi, Sufi, Bijoy, Prodip, BARI Gom-25 and BARI Gom-26) were evaluated to find out the suitable variety for optimum and late sown condition, to find out heat tolerant and heat sensitive variety and to find out the optimum sowing time for a specific variety. The experiment was conducted in the research farm of Wheat Research Center (25°38´ N, 88°41´ E and 38.20 m above sea level.), Bangladesh, under eight sowing times (viz., 8 Nov., 15 Nov., 22 Nov., 29 Nov., 6 Dec., 13 Dec., 20 Dec. and 27 Dec.). Results showed that wheat sown in November 22 to December 20 was significantly better compared to November 08, 15 and December 27, from the studied aspects of yield and yield components. Considering overall sowing performance of all genotypes Shatabdi is the best, followed by BARI Gom-26 (2nd), Sourav (3rd), Prodip (4th), Bijoy (5th), Gourab (6th), Sufi (7th) and BARI Gom-25 (least). In extremely heat stress (November 08 and December 27) condition Prodip was found to be heat sensitive genotype (yield reduction 41.18 and 28.92%), followed by BARI Gom-26 (yield reduction 41.15 and 22.73%). Both in too early and very late heat stress conditions, genotypes Sourav and BARI Gom-25 were found to be heat tolerant. In very early (November 08), variety Sourav (yield reduction 20.47%) is recommended, followed by BARI Gom-25 (yield reduction 27.91%) and in very late (December 27), Sufi is the best (yield reduction 8.60%), followed by Bijoy (yield reduction 11.05%). DOI: http://dx.doi.org/10.3329/ijarit.v1i1-2.13932 Int. J. Agril. Res. Innov. & Tech. 1 (1&2): 44-54, December, 2011


2018 ◽  
Vol 17 (03) ◽  
pp. 213-220 ◽  
Author(s):  
Teresa Bieńkowska ◽  
Elżbieta Suchowilska ◽  
Wolfgang Kandler ◽  
Rudolf Krska ◽  
Marian Wiwart

AbstractThe grain of modern wheat cultivars has a significantly lower mineral content, including the content of copper, iron, magnesium, manganese, phosphorous, selenium and zinc. For this reason cereal breeders, are constantly searching for new genetic sources of minerals that are essential in human nutrition. Triticum polonicum, which is grown on a small scale in Spain, southern Italy, Algeria, Ethiopia and warm regions of Asia, deserves special attention in this context. The micronutrient and macronutrient content of T. polonicum versus T. durum and T. aestivum was compared in this study. Polish wheat grain was characterized by the significantly highest content of phosphorus (4.55 g/kg), sulphur (1.82 g/kg), magnesium (1.42 g/kg), zinc (49.5 mg/kg), iron (39.1 mg/kg) and boron (0.56 mg/kg) as well as a low content of aluminium (only 1.04 mg/kg). The macronutrient profile of most T. polonicum lines differed completely from that of common wheat and durum wheat. The principal component analysis supported discrimination of seven Polish wheat lines with a particularly beneficial micronutrient profile (P2, P3, P5, P7, P9, P22 and P25). These lines were characterized by the highest content of copper, iron and zinc, as well as the lowest concentrations of strontium, aluminium and barium which are undesirable in food products. The above lines can be potentially applied as source materials for breeding new wheat varieties. The results of this study indicate that Polish wheat could be used in genetic biofortification of durum wheat and common wheat.


2015 ◽  
Vol 95 (5) ◽  
pp. 851-860 ◽  
Author(s):  
F. Pourazari ◽  
G. Vico ◽  
P. Ehsanzadeh ◽  
M. Weih

Pourazari, F., Vico, G., Ehsanzadeh, P. and Weih, M. 2015. Contrasting growth pattern and nitrogen economy in ancient and modern wheat varieties. Can. J. Plant Sci. 95: 851–860. Nutrient availability, especially nitrogen (N) availability, is a limiting factor for crop production in many regions of the world. Modern crop varieties often produce high yields under high resource availability, whereas ancient varieties are expected to have characteristics more suitable under low resource availability. To test this expectation, we compared the growth and N use efficiency (NUE) of some varieties of ancient hulled wheat, Triticum turgidum spp. dicoccum, and modern free-threshing wheat, T. aestivum and T. turgidum spp. durum. The wheats were grown under different nutrient fertilization (F) levels in two contrasting environments (field in Iran and outdoor growth container in Sweden). Grain yield was significantly higher in modern varieties than in ancient varieties, regardless of fertilization level. In contrast, N uptake efficiency (i.e., mean N in the plant during the main growth period over N in the initial seed grain) and grain N concentration were generally higher in the ancient varieties. Nitrogen use efficiency, defined as the ratio of the grain N content to the sown seed N content, was higher in the ancient varieties only at lower nutrient supply, because in modern varieties higher nutrient supply resulted in a marked increase in NUE through greatly enhanced grain-specific N efficiency (grain yield per mean plant N content during the main growth period). The modern varieties also showed greater fertilization responses in above-ground biomass and leaf area than ancient varieties. The results are relevant in the context of wheat breeding for nutrient use efficiency.


Sign in / Sign up

Export Citation Format

Share Document