scholarly journals Effect of Biochar and Irrigation on Soybean-Rhizobium Symbiotic Performance and Soil Enzymatic Activity in Field Rhizosphere

Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Ma ◽  
Egamberdieva ◽  
Wirth ◽  
Bellingrath-Kimura

Nitrogen (N) in soybean (Glycine max L.) plants derived from biological nitrogen fixation was shown to be a sustainable N resource to substitute for N fertilizer. However, the limited water supply in sandy soil is a critical factor for soybean nodulation and crop growth. This study investigated the potential mechanism of the effect of biochar and irrigation on the soybean-Rhizobium symbiotic performance and soil biological activity in a field trial. In the absence of N fertilizer, 10 t ha−1 of black cherry wood-derived biochar were applied under irrigated and rainfed conditions on an experimental, sandy field site. The plant biomass, plant nutrient concentrations, nodule number, nodule leghemoglobin content, soil enzyme activities, and soil-available nutrients were examined. Our results show that biochar application caused a significant increase in the nodule number by 35% in the irrigated condition. Shoot biomass and soil fluorescein diacetate hydrolytic activity were significantly increased by irrigation in comparison to the rainfed condition. The activity of soil protease reduced significantly, by 8%, with the biochar application in the irrigated condition. Further, a linear correlation analysis and redundancy analysis performed on the plant, nodule, and soil variables suggested that the biochar application may affect soybean N uptake in the sandy field. Nodulation was enhanced with biochar addition, however, the plant N concentration and nodule Lb content remained unaffected.

Plant Ecology ◽  
2020 ◽  
Vol 221 (11) ◽  
pp. 1133-1142
Author(s):  
Mateusz Rawlik ◽  
Andrzej M. Jagodziński

Abstract Seasonal fluctuations of light availability, nutrient concentrations, and moisture affect plant population traits like density, standing biomass, and flowering. We analyzed seasonal changes of density and shoot biomass of the four most frequent herb species growing in an oak–hornbeam forest community, i.e., Anemone nemorosa, Ficaria verna, Galeobdolon luteum, and Galium odoratum. In 2010 and 2011 plant biomass was harvested from 7 to 10 randomly situated square sample plots (0.36 m2) in the homogenous oak–hornbeam forest community every week in the spring and every two weeks in the summer and autumn. The highest abundance of Anemone nemorosa reached over 1000 shoots per m2, of Ficaria verna 459.5 shoots per m2, of Galium odoratum 83.6 shoots per m2, and of Galeobdolon luteum 98.4 shoots per m2 (means for 2010 and 2011, based on all sample plots). We did not observe negative correlation between density and shoot biomass. Growth rates of vegetative shoot biomass amounted to 0.857 mg day−1 for Anemone nemorosa, 0.467 mg day−1 for Ficaria verna, 0.722 mg day−1 for Galium odoratum, and 0.448 mg day−1 for Galeobdolon luteum (means for 2010 and 2011). Spring ephemerals had much higher densities of shoots than summer-greens. Summer-greens reached higher biomass of individual shoots than spring ephemerals. Flowering shoots constituted only 4, 2, and 11% of all shoots for A. nemorosa, F. verna, and G. odoratum, respectively. More resource availability resulting in high shoot biomass did not translate to higher share of flowering shoots.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523c-523
Author(s):  
Siegfried Zerche

Refined nutrient delivery systems are important for environmentally friendly production of cut flowers in both soil and hydroponic culture. They have to be closely orientated at the actual nutrient demand. To solve current problems, express analysis and nutrient uptake models have been developed in horticulture. However, the necessity of relatively laborious analysis or estimation of model input parameters have prevented their commercial use up to now. For this reason, we studied relationships between easily determinable parameters of plant biomass structure as shoot height, plant density and dry matter production as well as amount of nitrogen removal of hydroponically grown year-round cut chrysanthemums. In four experiments (planting dates 5.11.91; 25.3.92; 4.1.93; 1.7.93) with cultivar `Puma white' and a fixed plant density of 64 m2, shoots were harvested every 14 days from planting until flowering, with dry matter, internal N concentration and shoot height being measured. For each planting date, N uptake (y) was closely (r2 = 0.94; 0.93; 0.84; 0.93, respectively) related to shoot height (x) at the time of cutting and could be characterized by the equation y = a * × b. In the soilless cultivation system, dry matter concentrations of N remained constant over the whole growing period, indicating non-limiting nitrogen supply. In agreement with constant internal N concentrations, N uptake was linearly related (r2 = 0.94 to 0.99) to dry matter accumulation. It is concluded that shoot height is a useful parameter to include in a simple model of N uptake. However, in consideration of fluctuating greenhouse climate conditions needs more sophisticated approaches including processes such as water uptake and photosynthetically active radiation.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


2016 ◽  
Vol 13 (9) ◽  
pp. 2815-2821 ◽  
Author(s):  
Federico Baltar ◽  
Catherine Legrand ◽  
Jarone Pinhassi

Abstract. Extracellular enzymatic activities (EEAs) are a crucial step in the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase (APase), β-glucosidase (BGase), and leucine aminopeptidase (LAPase)), in the Baltic Sea for 18 months. The proportion of dissolved EEA ranged between 37 and 100, 0 and 100, and 34 and 100 % for APase, BGase, and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100 % during winter and  <  40 % during summer. A significant negative relation was found between the proportion of dissolved EEA and temperature, indicating that temperature might be a critical factor controlling the proportion of dissolved relative to total EEA in marine environments. Our results suggest a strong decoupling of hydrolysis rates from microbial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This might also suggest a potential effect of global warming on the hydrolysis of organic matter via a reduction of the contribution of cell-free enzymes to the bulk hydrolytic activity.


1986 ◽  
Vol 64 (12) ◽  
pp. 2993-2998 ◽  
Author(s):  
Steven F. Oberbauer ◽  
Nasser Sionit ◽  
Steven J. Hastings ◽  
Walter C. Oechel

Three Alaskan tundra species, Carex bigelowii Torr., Betula nana L., and Ledum palustre L., were grown in controlled-environment chambers at two nutrition levels with two concentrations of atmospheric CO2 to assess the interactive effects of these factors on growth, photosynthesis, and tissue nutrient content. Carbon dioxide concentrations were maintained at 350 and 675 μL L−1 under photosynthetic photon flux densities of 450 μmol m−2 s−1 and temperatures of 20:15 °C (light:dark). Nutrient treatments were obtained by watering daily with 1/60- or 1/8- strength Hoagland's solution. Leaf, root, and total biomass were strongly enhanced by nutrient enrichment regardless of the CO2 concentration. In contrast, enriched atmospheric CO2 did not significantly affect plant biomass and there was no interaction between nutrition and CO2 concentration during growth. Leaf photosynthesis was increased by better nutrition in two species but was unchanged by CO2 enrichment during growth in all three species. The effects of nutrient addition and CO2 enrichment on tissue nutrient concentrations were complex and differed among the three species. The data suggest that CO2 enrichment with or without nutrient limitation has little effect on the biomass production of these three tundra species.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Song Chen ◽  
Xiaoguo Zhang ◽  
Xia Zhao ◽  
Danying Wang ◽  
Chunmei Xu ◽  
...  

The effects of night temperature on plant morphology and nitrogen accumulation were examined in rice (Oryza sativaL.) during vegetative growth. The results showed that the shoot biomass of the plants was greater at 27°C (high nighttime temperature, HNT) than at 22°C (CK). However, the increase in both shoot and root biomasses was not significant under 10 mg N/L. The shoot nitrogen concentrations were 16.1% and 16.7% higher in HNT than in CK under 160 and 40 mg N/L. These results suggest that plant N uptake was enhanced under HNT; however, the positive effect might be limited by the N status of the plants. In addition, leaf area, plant height, root maximum length, root and shoot nitrogen concentrations, soluble leaf protein content, and soluble leaf carbohydrate content were greater in HNT than in CK under 40 and 160 mg N/L, while fresh root volume, root number, and the content of free amino acid in leaf were not significantly different between HNT and CK regardless of nitrogen levels. Moreover, leaf GS activity under HNT was increased at 160 mg N/L compared with that under CK, which might partly explain the positive effect of HNT on soluble protein and carbohydrate content.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1080 ◽  
Author(s):  
Nícolas Reinaldo Finkler ◽  
Flavia Tromboni ◽  
Iola Boëchat ◽  
Björn Gücker ◽  
Davi Gasparini Fernandes Cunha

Pollution abatement through phosphorus and nitrogen retention is a key ecosystem service provided by streams. Human activities have been changing in-stream nutrient concentrations, thereby altering lotic ecosystem functioning, especially in developing countries. We estimated nutrient uptake metrics (ambient uptake length, areal uptake rate, and uptake velocity) for nitrate (NO3–N), ammonium (NH4–N), and soluble reactive phosphorus (SRP) in four tropical Cerrado headwater streams during 2017, through whole-stream nutrient addition experiments. According to multiple regression models, ambient SRP concentration was an important explanatory variable of nutrient uptake. Further, best models included ambient NO3–N and water velocity (for NO3–N uptake metrics), dissolved oxygen (DO) and canopy cover (for NH4–N); and DO, discharge, water velocity, and temperature (for SRP). The best kinetic models describing nutrient uptake were efficiency-loss (R2 from 0.47–0.88) and first-order models (R2 from 0.60–0.85). NO3–N, NH4–N, and SRP uptake in these streams seemed coupled as a result of complex interactions of biotic P limitation, abiotic P cycling processes, and the preferential uptake of NH4–N among N-forms. Global change effects on these tropical streams, such as temperature increase and nutrient enrichment due to urban and agricultural expansion, may have adverse and partially unpredictable impacts on whole-stream nutrient processing.


2016 ◽  
Vol 29 (1) ◽  
pp. 94-100 ◽  
Author(s):  
ADERVAN FERNANDES SOUSA ◽  
LINDBERGUE ARAÚJO CRISOSTOMO ◽  
OLMAR BALLER WEBER ◽  
MARIA EUGENIA ORTIZ ESCOBAR ◽  
TEÓGENES SENNA DE OLIVEIRA

ABSTRACT: Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil-produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW), reverse osmosis-treated produced water (OPW), or ground water (GW). At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis-treated produced water in agriculture. However, more long-term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.


Akta Agrosia ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 55-60
Author(s):  
Marwanto Marwanto ◽  
Nasiroh Nasiroh ◽  
Bambang G. Mucitro ◽  
Merakati Handajaningsih

The beneficial effects of manure on soil properties, growth, and crop productivity have promoted its use for replacing the application of N fertilizer. However, it is not well understood to what extent N fertilizer was able to be substituted by cow manure. Accordingly, this pot experiment aimed to compare the effect of inorganic N fertilizer application alone with that of the combined use of inorganic N fertilizer with cow manure based on the same amount of total N on growth parameters, yield attributes, and nitrogen (N) uptake of black rice. The experiment was conducted under a screen house condition in Agriculture Faculty, Bengkulu University located at 15 meters altitude above sea level during the summer season of 2015. There were six treatments viz. T1 = 100% N from urea + 0% N from cow manure (0.52 g N + 0.00 g cow manure) pot-1, T2 = 80% N from urea  + 20% N from cow manure  (0.42 g N + 9.55 g cow manure) pot-1, T3 = 60% N from urea + 40% N from cow manure (0.31 g N  + 19.10 g cow manure) pot-1, T4 = 40% N from urea + 60% N from cow manure (0.21 g N + 28.65 g cow manure) pot-1, T5 = 20% N from urea + 80% N from cow manure (0.10 g N+ 38.20 g cow manure) pot-1, and T6 = 0% N from urea + 100% N from cow manure (0.00 g N  + 47.75 g cow manure) pot-1. The amount of inorganic N fertilizer in the form of urea and cow manure applied was calculated based on the recommended rate of 115.00 kg ha-1 for N fertilizer and 10.50 ton ha-1 for cow manure. These treatments were arranged in a Completely Randomized Design and repeated three times. The results showed that the treatments significantly (P ?0.005) affected growth parameters as measured by plant height, the number of leaves, fresh shoot weight, fresh root weight, dry shoot weight, dry root weight, yield attributes as determined by the total number of tillers, the total number productive tillers, grain yield per pot, and N uptake. The highest values for all these variables were obtained in the treatment receiving recommended rate of urea only (100% N from urea + 0% N from cow manure as equivalence) and the lowest in the treatment receiving a100% N from cow manure (0% N from urea + 100% N from cow manure). However, combined treatments of cow manure and inorganic N fertilizer such as 80% N from urea  + 20% N from cow manure, 60% N from urea + 40% N from cow manure 40% N from urea + 60% N from cow manure showed a parity statistically with the treatment receiving 100% N from urea only in maintaining the values for all these variables. Overall, the combined use of inorganic N fertilizer (urea) and cow manure as an equivalence promoted growth and yield of black rice by improving N uptake. Keywords: integrated nutrient management, soil chemical property, Nitrogen uptake, combined fertilizer application, black rice


Sign in / Sign up

Export Citation Format

Share Document