scholarly journals Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens

Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2909
Author(s):  
Yong Meng ◽  
Haonan Huo ◽  
Yang Zhang ◽  
Shiping Bai ◽  
Ruisheng Wang ◽  
...  

This study aimed to investigate the effects of glucose oxidase (GOD) supplementation on growth performance, apparent ileal digestibility (AID) of nutrients, intestinal morphology, and short-chain fatty acids (SCFAs) and microbiota in the ileum of broilers. Six hundred 1-day-old male broilers were randomly allotted to four groups of 10 replicates each with 15 birds per replicate cage. The four treatments included the basal diet without antibiotics (Control) and the basal diet supplemented with 250, 500, or 1000 U GOD/kg diet (E250, E500 or E1000). The samples of different intestinal segments, ileal mucosa, and ileal digesta were collected on d 42. Dietary GOD supplementation did not affect daily bodyweight gain (DBWG) and the ratio of feed consumption and bodyweight gain (FCR) during d 1-21 (p > 0.05); however, the E250 treatment increased DBWG (p = 0.03) during d 22–42 as compared to control. Dietary GOD supplementation increased the AIDs of arginine, isoleucine, lysine, methionine, threonine, cysteine, serine, and tyrosine (p < 0.05), while no significant difference was observed among the GOD added groups. The E250 treatment increased the villus height of the jejunum and ileum. The concentrations of secreted immunoglobulin A (sIgA) in ileal mucosa and the contents of acetic acid and butyric acid in ileal digesta were higher in the E250 group than in the control (p < 0.05), whereas no significant differences among E500, E1000, and control groups. The E250 treatment increased the richness of ileal microbiota, but E500 and E100 treatment did not significantly affect it. Dietary E250 treatment increased the relative abundance of Firmicutes phylum and Lactobacillus genus, while it decreased the relative abundance of genus Escherichina-Shigella (p < 0.05). Phylum Fusobacteria only colonized in the ileal digesta of E500 treated broilers and E500 and E1000 did not affect the relative abundance of Firmicutes phylum and Lactobacillus and Escherichina-Shigella genera as compared to control. These results suggested that dietary supplementation of 250 U GOD/kg diet improves the growth performance of broilers during d 22–42, which might be associated with the alteration of the intestinal morphology, SCFAs composition, and ileal microbiota composition.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 347-348
Author(s):  
Hanjin Oh ◽  
Shudong Liu ◽  
Won Yun ◽  
Jihwan Lee ◽  
Jiseon An ◽  
...  

Abstract This study was conducted to evaluate the effects of mixture of essential oils and organic acid supplementation on growth performance, blood profiles, leg bone length and intestinal morphology in ROSS broilers. A total of 40 Ross 308 broiler (1140 ±80g) were randomly allocated to 2 groups, basal diet (CON), basal diet+0.05% Avi-protect® (AVI), with 20 replicates every group, and 1 chicken per replicate per cage. The BW (P &lt; 0.05) and weight gain (P &lt; 0.05) of broilers were increased in the AVI group compared with the CON group. The content of triglyceride (P &lt; 0.05) and LDL (P &lt; 0.05) significantly decreased in the AVI group compared with the CON group. There was no significant difference on leg bone length between the AVI and the CON group (P &gt; 0.05). the villi height (P &lt; 0.05) and goblet cell count (P &lt; 0.05) significantly increased in the AVI group compared with the CON group. In conclusion, the Avi-protect® as feed additives improved the growth performance and lipid metabolism and promoted the development of intestinal morphology in broilers.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1347
Author(s):  
Pan Huang ◽  
Xuemei Cui ◽  
Zhipeng Wang ◽  
Chenwen Xiao ◽  
Quanan Ji ◽  
...  

The objective of this study was to assess the effects of dietary supplementation with Clostridium butyricum (CB) and a bacteriophage cocktail (BP) on growth performance, serum biochemical parameters, intestinal digestive and oxidase enzymes, intestinal morphology, immune responses, and the cecum microbiota in rabbits. In total, 108 New Zealand rabbits (5 weeks old) were randomly and equally allotted into three dietary treatment groups (four replicates per treatment, n = 36/treatment): (1) the control (CN) group—rabbits fed the basal diet; (2) CB group—rabbits fed the basal diet supplemented with 100 mg/kg diet Clostridium butyricum; and (3) BP group—rabbits fed the basal diet supplemented with 200 mg/kg diet BP cocktail, respectively, for 6 weeks. Compared with the CN diet, dietary CB and BP inclusion increased the average daily gain (ADG) and average daily feed intake (ADFI) and decreased the feed/gain (F/G) ratio of rabbits. Furthermore, CB increased the digestive enzyme activity (α-amylase and trypsin in the ileum); the chymotrypsin activity was also significantly increased in the duodenum and jejunum. Supplementation with CB significantly enhanced antioxidant capacity (SOD and GSH-Px) in the jejunum and ileum and reduced MDA levels. Additionally, rabbits fed CB had significantly elevated villus height (V) and (V/C) ratios but reduced crypt depth (C). Moreover, dietary CB supplementation markedly increased the ileal expression of tight junction proteins (occludin, ZO-1, and claudin-1) and increased secretory immunoglobulin A (sIgA) production. High-throughput sequencing indicated that the microbiota in the rabbit intestine was altered by CB and BP. Venn diagrams and heatmap plots revealed that the gut microbial community composition varied obviously among rabbits fed different diets. Specifically, CB increased the relative abundance of beneficial bacteria to maintain intestinal barrier homeostasis, whereas BP decreased the relative abundance of Gammaproteobacteria, which included a plenty of pathogenic bacteria.


2021 ◽  
Vol 4 (2) ◽  
pp. 84-91
Author(s):  
Niati Ningsih ◽  
Bambang Ariyadi ◽  
Zuprizal Zuprizal

The purpose of this study was to investigate the use of nanoencapsulation of Phaleria macrocarpa fruits extract (NEPM) in drinking water and the effect on broiler growth performance. A total number of 200 male broiler chicks, aged eight days old, were distributed into 5 treatments with 4 replicates (10 birds in each replicate). The experimental treatments consisted of the basal diet (P0; negative control), and basal diet with antibiotic tetracycline supplementation (P1; positive control), and basal diets with 2.5% of Phaleria macrocarpa fruits extract (P2), 2.5% NEPM (P3), or 5.0% NEPM (P4). The basal diet was based on yellow corn and soybean meal that contains 20.44% crude protein, 2917.47 kcal/kg metabolizable energy, 0.84% Calcium, and 0.51% available Phosphorus. The diets and drinking water was supplied for ad libitum consumption. Parameters evaluated in the current study were growth performance (feed consumption and conversation, body weight gain, water consumption, slaughter and carcass weight, and carcass percentage), Data were analyzed using analysis of variance in a completely randomized design. Orthogonal contrast tests were used to separate data with a significant difference. Results showed that supplementation of NEPM in the drinking water did not affect growth performance of broiler chicken.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiao-Long Wang ◽  
Zhu-Ying Liu ◽  
Ying-Hui Li ◽  
Ling-Yuan Yang ◽  
Jie Yin ◽  
...  

Lactobacillus delbrueckii is a Gram-positive bacterium mostly used in the dairy industry for yogurt and cheese. The present study was designed to evaluate the effects of Lactobacillus delbrueckii on serum biochemical parameters, intestinal morphology, and performance by supplementing at a dietary level of 0.1% in diets for weaned piglets. Eighty healthy weaned piglets (initial body weight: 7.56 ± 0.2 kg) were randomly divided into two feeding groups with four replicates in each group (n = 10 animals per replicate); piglets were fed with basal diet (CON) or basal diet containing 0.1% Lactobacillus delbrueckii (LAC). The results showed that dietary supplementation of Lactobacillus delbrueckii improved growth performance and increased serum HDL and insulin levels in piglets on the 28th day of the experimental time (p &lt; 0.05). The gut microbe analysis revealed that Lactobacillus delbrueckii significantly decreased the relative abundance of the phyla Bacteroidetes, but increased the relative abundance of the phyla Firmicutes. The Lactobacillus delbrueckii also significantly increased the relative abundance of Bifidobacterium and Lactobacillus at the genus level of the bacterial community in the ileum, but decreased the relative abundance of unclassified Clostridiales. Moreover, Lactobacillus delbrueckii improved mucosal morphology by obtaining higher intestinal villus height (p &lt; 0.05), significantly increasing the concentrations of butyrate, isobutyric acid, and isovaleric acid in colonic chyme of piglets, but decreasing the intestinal pH at the duodenum and ileum on the 28th day of the experimental time. In conclusion, dietary supplementation of Lactobacillus delbrueckii in the diet of weaned piglets can improve intestinal morphology and modulate the microbiota community to promote growth performance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenhui Qu ◽  
Jiaguo Liu

BackgroundGlucose oxidase is widely used as a livestock feed additive owing to its beneficial effects on growth performance and antioxidant activity. However, little is known about the effects of the enzyme on intestinal health.MethodsTo investigate the effects of glucose oxidase supplementation on the growth performance, intestinal function, and microbiota composition of broilers fed moldy corn, newly hatched Arbor Acres broilers were each randomly assigned to one of four groups, which were fed a basal diet (CON), a contaminated diet (10% moldy corn) (MC), a basal diet supplemented with 0.01% glucose oxidase (GOD), or a contaminated diet supplemented with 0.01% glucose oxidase (MCG).ResultsWe found that the average weight gain (ADG) of the MC group was significantly lower than those of the CON and GOD groups, and there were no significant differences in ADG between the MCG group and the CON and GOD groups. Intestinal morphology results revealed irregularly arranged villi and microvilli in the ilea from the MC group, whereas those from the other three groups were aligned regularly. Tight-junction protein analysis showed that both ZO-1 expression and claudin-4 expression in the MC group were significantly lower than those in the other groups. Inflammation cytokines analysis showed lower serum concentration of interleukin-10, as well as its mRNA expression in the ileum of the MC group, when compared with those of the other groups. Additionally, we observed lower glutathione peroxidase and total superoxide dismutase activity and higher malonaldehyde concentration in the MC group than those in the MCG group. The α and β diversity of microbiota profiling indicated that the cecal microbiota in the MC group differed from those in the other three groups.ConclusionThe results indicated that glucose oxidase supplementation was able to prevent the adverse effects from mycotoxin exposure on growth performance, antioxidant activity, inflammatory response, intestinal function, and microbiota composition in broilers. We suggested that glucose oxidase supplementation can be used in broilers to mitigate the adverse effects of moldy feed, and its benefits are due to its effect on intestinal microbiota composition.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bo Deng ◽  
Jie Wu ◽  
Xiaohui Li ◽  
Cheng Zhang ◽  
Xiaoming Men ◽  
...  

AbstractThe present study was conducted to investigate effects of Bacillus subtilis on growth performance, serum parameters, digestive enzymes, intestinal morphology, and colonic microbiota in piglets. A total of 72 piglets were weighed and randomly allotted into three treatments (four replication pens per treatment with six piglets/pen) for a 28-day experiment. The dietary treatments were as follows: basal diet (control group, CTR), basal diet supplementation with antibiotic (antibiotic group, ABT), and basal diet supplementation with 0.1% Bacillus subtilis (probiotic group, PBT). The average daily gain of body weight increased in both the ABT and PBT groups, and dietary antibiotics decreased the feed:gain ratio (F:G), as compared to the CTR group (P < 0.05). Both ABT and PBT piglets had increased serum triglycerides and lipase, amylase, maltase activities and villus height:crypt depth ratio (V/C) in ileum (P < 0.05). The PBT group also showed an increase in serum glucose and villus height in the ileum (P < 0.05). Dietary antibiotics increased Lactobacillus johnsonii, as compared to the CTR group, but decreased bacterial diversity and increased Escherichia coli, as compared to the PBT group (P < 0.05). Piglets dietary with B. subtilis modulated the microbiota by increasing the abundance of Firmicutes (L. johnsonii, L. reuteri) and decreasing the abundance of E. coli, as compared to the control group (P < 0.05). These results indicate that dietary of B. subtilis improves growth performance and intestinal health and can be a promising alternative to antibiotics in piglets diet.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 624
Author(s):  
Xinfu Zeng ◽  
Qing Li ◽  
Caimei Yang ◽  
Yang Yu ◽  
Zixian Fu ◽  
...  

We aimed to investigate the effects of Clostridium butyricum-, Bacillus subtilis-, and Bacillus licheniformis-based potential probiotics on the growth performance, intestinal morphology, immune responses, and caecal short chain fatty acids (SCFAs) and microbial structure in broiler chickens. Three treatment groups containing a total of 1200 one-day-old AA broilers were included: birds fed with a basal diet only (Con), birds fed with added 1010 probiotics cfu/kg (ProL), and birds fed with added 1011 probiotics cfu/kg (ProH). The dietary probiotics significantly improved the final and average body weights and serum immunoglobulins A, M, and Y. The probiotics also enhanced the ileal morphology and improved the caecal acetate, butyrate, and propionate contents. Furthermore, 16S rRNA sequencing revealed that dietary compound probiotics modulated the caecal microflora composition as follows: (1) all birds shared 2794 observed taxonomic units; (2) treatment groups were well separated in the PCA and PCoA analysis; (3) the relative abundance of Parabacteroides, Ruminococcaceae_UCG-014, Barnesiella, Odoribacter, [Eubacterium_coprostanoligenes_group], [Ruminococcus]_torques_group, and Butyricimonas significantly varied between treatments. The compound probiotics improved the growth performance, serum immune responses, the ratio of ileal villus height to crypt depth, and major caecal SCFAs in broiler chickens. The dietary C. butyricum-, B. subtilis-, and B. licheniformis-based probiotics improved overall broiler health and would benefit the poultry industry.


2019 ◽  
Vol 57 (3B) ◽  
pp. 9 ◽  
Author(s):  
Tien Cuong Nguyen ◽  
Thi Anh Phuong Chu ◽  
Hai Van Nguyen

ABSTRACT-QMFS2019Poultry production provides source of protein and contributes an important income for Vietnamese farmers. Among the poultry in Vietnam, ducks account for 27.3% of head of poultry and even 55.7% in Mekong Delta region. Along with the development of rearing ducks, bacterial, viral and fungal diseases occurring in the two last decades induced bad effect for poultry producer. Escherichia coli, Salmonella enterica, Streptococcal or Pasteurella act as major pathogenic bacteria in duck. The aims of this study were to investigate the antibacterial activity of garlic Allium sativum against E. coli, Staphylococcus aureus, Salmonella Typhimurium and to evaluate the effect of garlic on growth performance of duck from 1-28 old-days. The results indicated that fresh garlic and dried garlic powder showed inhibitory effect against pathogenic tested strains from 2% and 4% w/v, respectively. The inhibition zones and the minimal inhibitory concentration (MIC) values of garlic extract ranged from 11.3-28.3 mm and 0.02-0.2 g/ml, respectively. After 28 days of diet with garlic supplemented, D3 (2% of fresh garlic in water) showed significantly different in weight gain (WG), feed conversion ratio (FCR), protein efficiency ratio (PER), average daily weight (ADW); whereas, D2 (2% of garlic powder in basal diet) only possessed a difference significant in feed consumption (FC) compared to the D1 (control without garlic supplementation). The obtained results demonstrated the potential of garlic application in poultry production.


2021 ◽  
Author(s):  
Navid Naderi Boroojerdi ◽  
Mostafa Rajabzadeh

Abstract An experiment was conducted on 240 one-day old male (Ross308) chicken to the effect of substitution of dried mealworm (Tenebrio molitor) with soybean meal on growth performance and carcass characteristics broiler chicks. Chicks fed in a completely randomized design with 4 replicate cages (12 birds per cage). Five dietary treatments used: 1- Control treatment: Basal diet based on corn-soybean meal without adding dried mealworm, 2- Replacement of 5% dried mealworm with soybean meal in the base diet, 3- Replacement of 10% dried mealworm with soybean meal in the base diet, 4- Replacement of 15% dried mealworm with soybean meal in the base diet and 5- Replacement of 20% dried mealworm with soybean meal in the base diet. The results of the experiment showed that 3rd and 4th treatments with a substitution of 10 and 15 percent showed a higher mean weight gain and a daily gain, but their feed intake was lower comparing other treatments, and finally, the feed conversion ratio showed a significant decrease with respect to control treatment using these replacement levels. At 21 and 42 days of age, carcass yield and relative weight of the breasts showed significant increases in treatments 3 and 4, and other characteristics of chicken carcasses were not affected by the test treatments. The experiment showed that replacing soybean meal with 10% and 15% worm powder significantly improved the performance of broiler chickens, but no significant difference was found between the two levels.


Animals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 220 ◽  
Author(s):  
Mengmeng Xu ◽  
Long Che ◽  
Kaiguo Gao ◽  
Li Wang ◽  
Xuefen Yang ◽  
...  

Birth is one of the most important events of animal production agriculture, as newborns are abruptly forced to adapt to environmental and nutritional disruptions that can lead to oxidative damage and delay in growth. Taurine (Tau) is an important regulator of oxidative stress and possesses growth-enhancing properties. In the present study, we investigated the effects of dietary Tau supplementation in gilts during late gestation and lactation on the growth performance of piglets by assessing intestinal morphology and barrier function, and oxidative stress status. Sixteen gilts were randomly allocated to the Con (basal diet) and Tau (basal diet with 1% Tau) groups from 75 d of gestation to weaning. Maternal dietary Tau supplementation significantly increased weaning weight and average daily gain weight in piglets. Piglets in the Tau group had higher villus height and villus height-to-crypt depth ratio (VCR), ZO-1 protein expression, and secretory immunoglobulin A (sIgA) content in the jejunum. Meanwhile, Tau bebeficial affected the milk quality of gilts, as indicated by decreased malondialdehyde (MDA) concentration and increased total superoxide dismutase (T-SOD), total antioxidative capability (T-AOC), glutathione peroxidase (GPx), and catalase (CAT) activity. Furthermore, Tau supplementation increased T-SOD activity in plasma and SOD2 protein expression in the jejunum in the piglets. In conclusion, this study provides evidence that dietary Tau supplementation to gilts improves growth performance in piglets, owing to improved intestinal morphology and barrier function, as well as inhibition of oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document