scholarly journals Effects of Dietary Betaine on Growth Performance, Digestive Function, Carcass Traits, and Meat Quality in Indigenous Yellow-Feathered Broilers under Long-Term Heat Stress

Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 506 ◽  
Author(s):  
Liu ◽  
Yuan ◽  
Sun ◽  
Balasubramanian ◽  
Zhao ◽  
...  

Heat stress has a profound effect on poultry health and productivity. The present study evaluated whether feeding betaine could ameliorate long-term heat stress-induced impairment of productive performance in indigenous yellow-feathered broilers. A total of 240 five-week-old male broilers were randomly allocated to five treatments with six replicates of eight broilers each. The five treatments included a thermoneutral zone control group (TN, fed basal diet), a heat stress control group (HS, fed basal diet), and an HS control group supplemented 500, 1000, 2000 mg/kg betaine, respectively. The TN group was raised at 26 ± 1 °C during the whole study, HS groups exposed to 32 ± 1 °C for 8 h/day from 9:00 am to 17:00 pm. The results showed that heat stress decreased the body weight gain (BWG) and feed intake of broilers during 1–5, 6–10, and 1–10 weeks (p < 0.05). Dietary betaine tended to improve the BWG and feed intake of broilers under 5 weeks of heat stress (linear, p < 0.10), and betaine supplementation linearly increased the BWG and feed intake during 6–10 and 1–10 weeks (p < 0.05). Additionally, nitrogen retention was reduced by 5 weeks and 10 weeks of heat stress (p < 0.05), whereas dietary betaine could improve nitrogen retention in heat stressed broilers after both 5 and 10 weeks of heat stress (linear, p < 0.05). Moreover, this study observed that the trypsin activity of jejunum was decreased by 5 weeks of heat stress (p < 0.05), whereas betaine supplementation had quadratic effects on trypsin activity of jejunum in heat stressed broilers (p < 0.05). Furthermore, 10 weeks of heat stress induced a reduction of villus height of the duodenum and jejunum (p < 0.05), and decreased the villus height to crypt depth ratio of the jejunum (p < 0.05). Supplementation with betaine ameliorated the adverse effects of heat stress on these parameters (p < 0.05). Compared with the TN group, 10 weeks of heat stress reduced carcass and breast yield (p < 0.05) and betaine supplementation improved carcass and breast yield of heat stressed broilers (linear, p < 0.05). In conclusion, dietary supplementation of betaine could reduce the detrimental effects of long-term heat stress on growth performance, digestive function, and carcass traits in indigenous yellow-feathered broilers.

2021 ◽  
Vol 8 ◽  
Author(s):  
Teketay Wassie ◽  
Zhuang Lu ◽  
Xinyi Duan ◽  
Chunyan Xie ◽  
Kefyalew Gebeyew ◽  
...  

Marine algae polysaccharides have been shown to regulate various biological activities, such as immune modulation, antioxidant, antidiabetic, and hypolipidemic. However, litter is known about the interaction of these polysaccharides with the gut microbiota. This study aimed to evaluate the effects of marine algae Enteromorpha (Ulva) prolifera polysaccharide (EP) supplementation on growth performance, immune response, and caecal microbiota of broiler chickens. A total of 200 1-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with ten replications of ten chickens in each replication. The dietary treatments consisted of the control group (fed basal diet), and EP group (received diet supplemented with 400 mg EP/kg diet). Results showed that chickens fed EP exhibited significantly higher (P &lt; 0.05) body weight and average daily gain than the chicken-fed basal diet. In addition, significantly longer villus height, shorter crypt depth, and higher villus height to crypt depth ratio were observed in the jejunal and ileal tissues of chickens fed EP. EP supplementation upregulated the mRNA expression of NF-κB, TLR4, MyD88, IL-2, IFN-α, and IL-1β in the ileal and jejunal tissues (P &lt; 0.05). Besides, we observed significantly higher (P &lt; 0.05) short-chain volatile fatty acids (SCFAs) levels in the caecal contents of the EP group than in the control group. Furthermore, 16S-rRNA analysis revealed that EP supplementation altered gut microbiota and caused an abundance shift at the phylum and genus level in broiler chicken. Interestingly, we observed an association between microbiota and SCFAs production. Overall, this study demonstrated that supplementation of diet with EP promotes growth performance, improves intestinal immune response and integrity, and modulates the caecal microbiota of broiler chickens. This study highlighted the application of marine algae polysaccharides as an antibiotic alternative for chickens. Furthermore, it provides insight to develop marine algae polysaccharide-based functional food and therapeutic agent.


2018 ◽  
Vol 26 (1) ◽  
pp. 35 ◽  
Author(s):  
Song Li ◽  
Miaoqing Zhao ◽  
Tingting Jiang ◽  
Wenwen Lv ◽  
Shujuan Gao ◽  
...  

<p>The present study evaluated the effect of dietary <em>Eucommia ulmoides leaves</em> (EUL) on growth performance and antioxidant status of growing rabbits under heat stress condition. Four hundred and fifty weaned New Zealand male rabbits (6 wk old) were randomly divided into 3 equal groups (150 rabbits/group) and fed with a basal diet (control, digestible energy (DE): 15.92 MJ/kg and crude protein (CP): 19.24%) or the basal diet supplemented with 1 or 5 g of EUL/kg of diet (EUL1 and EUL5), in which the same quantity of barley meal was replaced. During the 21 d of experiment (43 to 63 d of age), the temperature and relative humidity of the rabbit house ranged from 27.5 to 32.5°C and from 65 to 73%, respectively. We analysed feed intake, growth performance and antioxidant status of growing rabbits. Compared with the control group, at the end of the experimental period, EUL supplementation significantly reduced the average daily feed intake (92.0, 92.8 and 100.7 g/d for EUL1, EUL5 and control, respectively; P&lt;0.05), improved the feed conversion ratio (3.80, 3.81 and 4.59 for EUL1, EUL5 and control, respectively; P&lt;0.05), increased the activities of glutathione peroxidase (+35.5 and +35.0% in plasma and liver of rabbits in EUL5 vs. control group, respectively; P&lt;0.05) and reduced those of malondialdehyde (–12.0 and –46.0% in plasma and liver of rabbits in EUL5 vs. control group, respectively; P&lt;0.05). These results suggest that inclusion of EUL in the diet of growing rabbits improved the growth performance and antioxidant status in growing rabbits.</p>


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1558
Author(s):  
Yan Liu ◽  
Shenggang Yin ◽  
Jiayong Tang ◽  
Yonggang Liu ◽  
Gang Jia ◽  
...  

Chronic heat stress (CHS) induces metabolic changes in skeletal muscle from growth to maintenance that jeopardizes growth performance, carcass traits, and meat quality of pigs. We investigated the protective effect of dietary organic selenium (hydroxy-4-methylselenobutanoic acid, OH-SeMet) on CHS-induced skeletal muscle damages of growing pigs, and the corresponding responses of selenoproteins. A total of 40 ((Landrace × Yorkshire) × Duroc) pigs with an average live weight of 49.64 ± 2.48 kg were used in this 4-week trial. Pigs were randomly allotted to 5 groups: The control group was raised on a basal diet in a thermoneutral environment (22 ± 2 °C); and four CHS groups were raised on a basal diet and supplemented with Se 0.0, 0.2, 0.4, and 0.6 mg/kg as OH-SeMet, respectively, in hyperthermal condition (33 ± 2 °C). CHS resulted in significant decrease of growth performance, carcass traits, and meat quality, which were associated with reduced (p < 0.05) serum alkaline phosphatase (ALP) and total superoxide dismutase (T-SOD) and increased (p < 0.05) serum creatine (CK), sarcous heat shock protein 70 (HSP70), glucokinase (GCK), phosphoenolpyruvate carboxykinase (PEPCK), and malondialdehyde (MDA) contents. Meanwhile, four metabolism-related genes and seven selenoprotein encoding genes were abnormally expressed in skeletal muscle. Dietary OH-SeMet addition partially alleviated the negative impact of CHS on carcass traits and improved meat quality. These improvements were accompanied by the increase in Se deposition, the anti-oxidative capacity of serum and muscle, and protein abundance of GPX1, GPX3, GPX4, and SELENOP. Supplementation with 0.6 mg Se/kg (OH-SeMet) restored the sarcous PEPCK, and 0.4 and 0.6 mg Se/kg (OH-SeMet) restored all abnormally expressed metabolism-related and selenoprotein encoding genes. In summary, dietary supplementation with OH-SeMet beyond Se requirement mitigated CHS-induced depression of carcass traits and meat quality of pigs associated with optimal skeletal metabolism, enhanced antioxidant capacity, and regulation of selenoproteins in skeletal muscle of pigs.


2022 ◽  
Vol 8 ◽  
Author(s):  
Zhenkai Tong ◽  
Fuhong Lei ◽  
Lixuan Liu ◽  
Fei Wang ◽  
Aiwei Guo

The purpose of this experiment was to study the effects of Plotytarya strohilacea Sieb. et Zuce tannin on broilers growth performance, antioxidant function, intestinal development, intestinal morphology and the cecal microbial composition. In this experiment, a total of 360 1-day-old Arbor Acres male broilers were randomly divided into 4 treatment groups, with 6 replicates in each group and 15 broilers in each replicate. The control group (Control) was fed the basal diet, and the broilers were fed a basal diet supplemented with 0 (Control), 100 (PT1), 400 (PT2), and 800 (PT3) mg/kg Plotytarya strohilacea Sieb. et Zuce tannins for 42 days, respectively. The results showed that the average daily feed intake (ADFI) of the PT1 group was significantly lower than that of the control group, and there was a significant quadratic relationship between the ADFI and the concentration of tannin (P &lt; 0.05). Compared with the control group, the F/G of broilers during the 22–42 days phase in the PT1 group showed a decreasing trend (P = 0.063). The serum catalase (CAT) activity in the PT1 group was significantly higher than those of the other three groups, and the effect was significantly quadratically related to the dosage (P &lt; 0.05). The glutathione peroxidase (GSH-Px) activity in the PT1, PT2 and control groups were significantly higher than that of the PT3 group, and the effect was significantly quadratically related to the addition amount (P &lt; 0.05). The serum total antioxidant capacity (T-AOC) activity in the PT1 group was significantly higher than that in the control group, and the effect was significantly quadratically related to the addition amount (P &lt; 0.05). Compared to the control group, the villus height of jejunum in the PT1, PT2 and PT3 groups were significantly higher, and there was a significant quadratic relationship between the villus height of jejunum and the addition amount (P &lt; 0.05). In addition, adding tannins to diets significantly increased Parabacteroides in the dominant genus (P &lt; 0.05). In conclusion, dietary supplementation with Plotytarya strohilacea Sieb. et Zuce tannin improved the growth performance, antioxidant function, and intestinal morphology along with an increased abundance of Parabacteroides in the cecum, and the recommended dosage of tannin in broiler diets was 100 mg/kg.


2020 ◽  
Vol 98 (12) ◽  
Author(s):  
Daolin Mou ◽  
Dajiang Ding ◽  
Shuang Li ◽  
Hui Yan ◽  
Binting Qin ◽  
...  

Abstract Selenium (Se) is an essential trace element for animals and exists in nature in both inorganic and organic forms. Although organic Se is more bioavailable than inorganic Se, there are inconsistent reports on the effect of organic Se on the reproductive performance of sows. This study was conducted to investigate the effect of maternal organic Se (2-hydroxy-4-methylselenobutanoic [HMSeBA]) supplementation on reproductive performance and antioxidant capacity of sows, and the long-term effect on the growth performance and antioxidant capacity of their offspring with or without lipopolysaccharide (LPS) challenge. The experimental design used in this study was a completely randomized design; 45 Landrace × Yorkshire sows were randomly allocated to receive one of the following three diets during gestation: control diet (Control, basal diet, n = 15), sodium selenite (Na2SeO3)-supplemented diet (Na2SeO3, basal diet + 0.3 mg Se/kg Na2SeO3, n = 15), and HMSeBA-supplemented diet (HMSeBA, basal diet + 0.3 mg Se/kg HMSeBA, n = 15). On day 21 of age, male offspring from each group were injected with LPS or saline (n = 6). As compared with the control group, maternal HMSeBA supplementation increased the number of total born piglets, while decreased birth weight (P &lt; 0.05). In the first week of lactation, maternal HMSeBA supplementation increased litter weight gain compared with the Na2SeO3 group (P &lt; 0.05) and increased the average daily gain of piglets compared with the control group and Na2SeO3 group (P &lt; 0.05). Meanwhile, maternal HMSeBA supplementation decreased piglet birth interval as compared with the control group and Na2SeO3 group (P &lt; 0.05). Besides, plasma glutathione peroxidase (GSH-Px) activity was higher in the HMSeBA group on farrowing 0 min and 90 min, while malondialdehyde (MDA) concentration was lower on farrowing 0, 90, and 135 min than those in the control group (P &lt; 0.05). In addition, maternal HMSeBA supplementation increased the concentration of selenoprotein P (SELENOP) in colostrum compared with the control group (P &lt; 0.05). Further study revealed that the LPS-challenged HMSeBA group had higher GSH-Px and total antioxidant capacity and lower MDA in weaning piglets compared with the LPS-challenged control group (P &lt; 0.05). Taken together, maternal HMSeBA supplementation increased the number of total born piglets, shortened the duration of farrowing, improved the antioxidant capacities of sows and their offspring, and improved the growth performance of suckling pigs at the first week of lactation. Thus, HMSeBA supplementation during gestation has the potentiality to produce more kilogram of meat.


2020 ◽  
Vol 98 (12) ◽  
Author(s):  
Michael O Wellington ◽  
Michael A Bosompem ◽  
Raelene Petracek ◽  
Veronika Nagl ◽  
Daniel A Columbus

Abstract The prevalence of deoxynivalenol (DON) is a concern for swine producers, and although there has been extensive research into the effects of DON in pigs, focus has been in young pigs and/or in short-term studies. The objective of the study was to determine the effect of long-term exposure to DON-contaminated diets in finisher pigs. A total of 200 pigs (76.6 ± 3.9 kg initial weight) were group housed (five pigs per pen; n = 10 pens/treatment) in a 6-wk trial. Pigs were fed a wheat-barley-soybean meal-based control (CONT) diet with no DON or the basal diet in which clean wheat was replaced by DON-contaminated wheat and wheat screenings to provide DON content of 1, 3, or 5 ppm (DON1, DON3, and DON5, respectively). Individual BW and pen feed intake were recorded weekly to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F). Blood was collected on days 0, 14, and 43 and analyzed for indicators of liver and kidney health. Nitrogen (N)-balance was conducted immediately following the growth performance period to determine the effect of DON on nutrient utilization. Blood and urine samples collected during N balance were analyzed for DON content. Feeding DON reduced (P &lt; 0.05) ADFI and ADG from days 0 to 28 compared with CONT, after which there was no effect of diet on ADFI and ADG. The G:F was lower (P &lt; 0.05) in DON5 fed pigs compared with all treatments during days 0 to 7; however, no treatment effects on G:F was observed from days 8 to 42. Nitrogen retention was lower (P &lt; 0.05) in DON3 and DON5 compared with DON1-fed pigs. Nitrogen retention efficiency was higher (P &lt; 0.05) in DON1 compared with DON3 and DON5 and protein deposition for DON1 pigs was higher (P &lt; 0.05) than all treatments. There were no treatment effects on indicators of liver and kidney health. As dietary DON intake increased, concentration of DON in blood and urine increased. Overall, although there was an initial decrease in ADG and ADFI in pigs receiving diets containing &gt;1 ppm DON, pig performance recovered after a period of time, whereas nutrient utilization continued to be affected after recovery of performance. Moreover, the lack of DON on G:F indicates that the negative effects of DON on growth performance are largely due to reduced feed intake. Overall, although pigs maybe capable of adapting to intake of DON-contaminated diets, their final body weight will be reduced when fed diets containing &gt;1 ppm DON.


2020 ◽  
Vol 60 (14) ◽  
pp. 1704 ◽  
Author(s):  
A. A. Saleh ◽  
K. Amber ◽  
A. A. Mohammed

Context The use of antibiotics in poultry production is appropriate; however, it brings a high risk of dissemination of antibiotic-resistant strains of pathogenic and non-pathogenic bacteria and their further transmission to humans via the food chain. Aims The effects of supplementation with Lactobacillus acidophilus (a probiotic) or avilamycin (an in-feed antibiotic growth promoter), on growth performance, digestibility, plasma lipid levels, and the expression of certain growth-related genes were investigated. Methods In total, 135 15-day-old broiler chicks were divided into three groups (n = 45): a control group and two treatment groups. Each treatment group was then further divided into three replicates (15 birds each). The control group was fed a basal diet; the second group received basal diet supplemented with avilamycin (0.1 g/kg); the third group received basal diet plus L. acidophilus (0.1 g/kg). Growth performance (bodyweight, feed intake and feed-conversion ratio) was measured. Digestibility and gene expression were measured at the end of the experiment. Key results Greatest bodyweight gain was achieved in the L. acidophilus-fed chicks, which were significantly (P &lt; 0.05) heavier than the control chicks and the avilamycin-fed chicks. Addition of avilamycin or L. acidophilus to the diet also significantly improved feed efficiency (P &lt; 0.05) compared with the control. Although the digestibility of dry matter, crude protein and crude fibre significantly improved in the two experimental groups compared with the control, ether extract was not affected. In addition, plasma total cholesterol, triglyceride and low-density-lipoprotein cholesterol levels were significantly (P &lt; 0.05) decreased whereas plasma high-density-lipoprotein cholesterol was significantly (P &lt; 0.05) increased in the L. acidophilus group compared with the control. Expression of the genes for growth hormone secretagogue receptor (GHSR), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 1 receptor (IGF1R) was remarkably upregulated in the skeletal muscles of the two experimental groups. Conclusions Supplementation with L. acidophilus (0.1 g/kg) in the broiler diet had positive effects on growth, feed intake, feed efficiency, digestibility, and plasma lipid levels of the broilers. Implications Lactobacillus acidophilus might be a more useful additive in broiler feed than antibiotic growth promoters such as avilamycin.


2018 ◽  
Vol 119 (11) ◽  
pp. 1254-1262 ◽  
Author(s):  
Yueping Chen ◽  
Hao Zhang ◽  
Yefei Cheng ◽  
Yue Li ◽  
Chao Wen ◽  
...  

AbstractThis study was conducted to investigate the protective effects ofl-threonine (l-Thr) supplementation on growth performance, inflammatory responses and intestinal barrier function of young broilers challenged with lipopolysaccharide (LPS). A total of 144 1-d-old male chicks were allocated to one of three treatments: non-challenged broilers fed a basal diet (control group), LPS-challenged broilers fed a basal diet withoutl-Thr supplementation and LPS-challenged broilers fed a basal diet supplemented with 3·0 g/kgl-Thr. LPS challenge was performed intraperitoneally at 17, 19 and 21 d of age, whereas the control group received physiological saline injection. Compared with the control group, LPS challenge impaired growth performance of broilers, andl-Thr administration reversed LPS-induced increase in feed/gain ratio. LPS challenge elevated blood cell counts related to inflammation, and pro-inflammatory cytokine concentrations in serum (IL-1βand TNF-α), spleen (IL-1βand TNF-α) and intestinal mucosa (jejunal interferon-γ(IFN-γ) and ileal IL-1β). The concentrations of intestinal cytokines in LPS-challenged broilers were reduced byl-Thr supplementation. LPS administration increased circulatingd-lactic acid concentration, whereas it reduced villus height, the ratio between villus height and crypt depth and goblet density in both jejunum and ileum. LPS-induced decreases in jejunal villus height, intestinal villus height:crypt depth ratio and ileal goblet cell density were reversed withl-Thr supplementation. Similarly, LPS-induced alterations in the intestinal mRNA abundances of genes related to intestinal inflammation and barrier function (jejunal toll-like receptor 4,IFN-γand claudin-3, and ilealIL-1βand zonula occludens-1) were normalised withl-Thr administration. It can be concluded thatl-Thr supplementation could attenuate LPS-induced inflammatory responses and intestinal barrier damage of young broilers.


Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 493 ◽  
Author(s):  
Jun Li ◽  
Yefei Cheng ◽  
Yueping Chen ◽  
Hengman Qu ◽  
Yurui Zhao ◽  
...  

This study aimed to investigate the effects of chitooligosaccharide (COS) inclusion as an alternative to antibiotics on growth performance, intestinal morphology, barrier function, antioxidant capacity, and immunity in broilers. In total, 144 one-day-old Arbor Acres broiler chicks were randomly assigned into 3 groups and fed a basal diet free from antibiotics (control group) or the same basal diet further supplemented with either chlortetracycline (antibiotic group) or COS, for 21 days. Compared with the control group, inclusion of COS reduced the feed to gain ratio, the jejunal crypt depth, the plasma diamine oxidase activity, and the endotoxin concentration, as well as jejunal and ileal malondialdehyde contents, whereas increased duodenal villus height, duodenal and jejunal ratio of villus height to crypt depth, intestinal immunoglobulin G, and jejunal immunoglobulin M (IgM) contents were observed, with the values of these parameters being similar or better to that of the antibiotic group. Additionally, supplementation with COS enhanced the superoxide dismutase activity and IgM content of the duodenum and up-regulated the mRNA level of claudin three in the jejunum and ileum, when compared with the control and antibiotic groups. In conclusion, dietary COS inclusion (30 mg/kg), as an alternative to antibiotics, exerts beneficial effects on growth performance, intestinal morphology, barrier function, antioxidant capacity, and immunity in broilers.


Sign in / Sign up

Export Citation Format

Share Document