scholarly journals Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance

Antibiotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Cristina Uruén ◽  
Gema Chopo-Escuin ◽  
Jan Tommassen ◽  
Raúl C. Mainar-Jaime ◽  
Jesús Arenas

Multidrug resistant bacteria are a global threat for human and animal health. However, they are only part of the problem of antibiotic failure. Another bacterial strategy that contributes to their capacity to withstand antimicrobials is the formation of biofilms. Biofilms are associations of microorganisms embedded a self-produced extracellular matrix. They create particular environments that confer bacterial tolerance and resistance to antibiotics by different mechanisms that depend upon factors such as biofilm composition, architecture, the stage of biofilm development, and growth conditions. The biofilm structure hinders the penetration of antibiotics and may prevent the accumulation of bactericidal concentrations throughout the entire biofilm. In addition, gradients of dispersion of nutrients and oxygen within the biofilm generate different metabolic states of individual cells and favor the development of antibiotic tolerance and bacterial persistence. Furthermore, antimicrobial resistance may develop within biofilms through a variety of mechanisms. The expression of efflux pumps may be induced in various parts of the biofilm and the mutation frequency is induced, while the presence of extracellular DNA and the close contact between cells favor horizontal gene transfer. A deep understanding of the mechanisms by which biofilms cause tolerance/resistance to antibiotics helps to develop novel strategies to fight these infections.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasmin Neves Vieira Sabino ◽  
Mateus Ferreira Santana ◽  
Linda Boniface Oyama ◽  
Fernanda Godoy Santos ◽  
Ana Júlia Silva Moreira ◽  
...  

AbstractInfections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pressure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Fuqing Huang ◽  
Kunling Teng ◽  
Yayong Liu ◽  
Yanhong Cao ◽  
Tianwei Wang ◽  
...  

Due to the challenges of antibiotic resistance to global health, bacteriocins as antimicrobial compounds have received more and more attention. Bacteriocins are biosynthesized by various microbes and are predominantly used as food preservatives to control foodborne pathogens. Now, increasing researches have focused on bacteriocins as potential clinical antimicrobials or immune-modulating agents to fight against the global threat to human health. Given the broad- or narrow-spectrum antimicrobial activity, bacteriocins have been reported to inhibit a wide range of clinically pathogenic and multidrug-resistant bacteria, thus preventing the infections caused by these bacteria in the human body. Otherwise, some bacteriocins also show anticancer, anti-inflammatory, and immune-modulatory activities. Because of the safety and being not easy to cause drug resistance, some bacteriocins appear to have better efficacy and application prospects than existing therapeutic agents do. In this review, we highlight the potential therapeutic activities of bacteriocins and suggest opportunities for their application.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4974 ◽  
Author(s):  
Carla Dias ◽  
Anabela Borges ◽  
Diana Oliveira ◽  
Antonio Martinez-Murcia ◽  
Maria José Saavedra ◽  
...  

BackgroundThe “One Health” concept recognizes that human health and animal health are interdependent and bound to the health of the ecosystem in which they (co)exist. This interconnection favors the transmission of bacteria and other infectious agents as well as the flow of genetic elements containing antibiotic resistance genes. This problem is worsened when pathogenic bacteria have the ability to establish as biofilms. Therefore, it is important to understand the characteristics and behaviour of microorganisms in both planktonic and biofilms states from the most diverse environmental niches to mitigate the emergence and dissemination of resistance.MethodsThe purpose of this work was to assess the antibiotic susceptibility of four bacteria (Acinetobacterspp.,Klebsiella pneumoniae,Pseudomonas fluorescensandShewanella putrefaciens) isolated from wild animals and their ability to form biofilms. The effect of two antibiotics, imipenem (IPM) and ciprofloxacin (CIP), on biofilm removal was also assessed. Screening of resistance genetic determinants was performed by PCR. Biofilm tests were performed by a modified microtiter plate method. Bacterial surface hydrophobicity was determined by sessile drop contact angles.ResultsThe susceptibility profile classified the bacteria as multidrug-resistant. Three genes coding for β-lactamases were detected inK. pneumoniae(TEM, SHV, OXA-aer) and one inP. fluorescens(OXA-aer).K. pneumoniaewas the microorganism that carried more β-lactamase genes and it was the most proficient biofilm producer, whileP. fluorescensdemonstrated the highest adhesion ability. Antibiotics at their MIC, 5 × MIC and 10 × MIC were ineffective in total biofilm removal. The highest biomass reductions were found with IPM (54% at 10 × MIC) againstK. pneumoniaebiofilms and with CIP (40% at 10 × MIC) againstP. fluorescensbiofilms.DiscussionThe results highlight wildlife as important host reservoirs and vectors for the spread of multidrug-resistant bacteria and genetic determinants of resistance. The ability of these bacteria to form biofilms should increase their persistence.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Ye Jin ◽  
Yinjuan Guo ◽  
Qing Zhan ◽  
Yongpeng Shang ◽  
Di Qu ◽  
...  

ABSTRACT Previous studies have shown that the administration of antibiotics at subinhibitory concentrations stimulates biofilm formation by the majority of multidrug-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated the effect of subinhibitory concentrations of mupirocin on biofilm formation by the community-associated (CA) mupirocin-sensitive MRSA strain USA300 and the highly mupirocin-resistant clinical S. aureus SA01 to SA05 isolates. We found that mupirocin increased the ability of MRSA cells to attach to surfaces and form biofilms. Confocal laser scanning microscopy (CLSM) demonstrated that mupirocin treatment promoted thicker biofilm formation, which also correlated with the production of extracellular DNA (eDNA). Furthermore, quantitative real-time PCR (RT-qPCR) results revealed that this effect was largely due to the involvement of holin-like and antiholin-like proteins (encoded by the cidA gene), which are responsible for modulating cell death and lysis during biofilm development. We found that cidA expression levels significantly increased by 6.05- to 35.52-fold (P < 0.01) after mupirocin administration. We generated a cidA-deficient mutant of the USA300 S. aureus strain. Exposure of the ΔcidA mutant to mupirocin did not result in thicker biofilm formation than that in the parent strain. We therefore hypothesize that the mupirocin-induced stimulation of S. aureus biofilm formation may involve the upregulation of cidA.


2020 ◽  
Author(s):  
Shogo Yoshimoto ◽  
Ayane Kawashiri ◽  
Taishi Matsushita ◽  
Satoshi Ishii ◽  
Stephan Göttig ◽  
...  

<p>The COVID-19 pandemic caused by a virus has been posing a global threat to humanity and human society. It reminded us of the horror of infectious diseases. Pathogenic bacteria also cause infectious disease, but bacteria are not as much of a threat as viruses because antibiotics are effective against them. This is changing, however, with the emergence of antibiotic-resistant bacteria. The global expansion of multidrug-resistant bacteria has become a clinical problem, and the threat of bacterial infection would come back in the near future. The overuse of antibiotics amplifies the opportunity for resistant bacteria to emerge and spread. The increased antibiotic use during this COVID-19 pandemic could also increase the threat of resistant bacteria. As an alternative to antibiotics, antibiofouling surfaces have drawn intensive research interest and have been developed. <i>Acinetobacter</i> sp. Tol 5 exhibits high adhesiveness to various surfaces through AtaA, a member of the trimeric autotransporter adhesin (TAA) family. We examined the adhesion of Tol 5 and other bacteria expressing different TAAs to antiadhesive surfaces. The results highlighted Tol 5’s stickiness through AtaA, which enables cells to adhere even to antiadhesive materials including polytetrafluoroethylene with a low surface free energy, a hydrophilic polymer brush exerting steric hindrance, and mica with an ultrasmooth surface. Tol 5 cells also adhered to a zwitterionic 2-methacryloyloxyethyl-phosphorylcholine-polymer-coated surface but were exfoliated by a weak shear stress, suggesting that exchangeable bound water molecules contribute to AtaA’s interaction with materials.</p>


2015 ◽  
Vol 59 (7) ◽  
pp. 4094-4105 ◽  
Author(s):  
Jennifer L. Dale ◽  
Julian Cagnazzo ◽  
Chi Q. Phan ◽  
Aaron M. T. Barnes ◽  
Gary M. Dunny

ABSTRACTThe emergence of multidrug-resistant bacteria and the limited availability of new antibiotics are of increasing clinical concern. A compounding factor is the ability of microorganisms to form biofilms (communities of cells encased in a protective extracellular matrix) that are intrinsically resistant to antibiotics.Enterococcus faecalisis an opportunistic pathogen that readily forms biofilms and also has the propensity to acquire resistance determinants via horizontal gene transfer. There is intense interest in the genetic basis for intrinsic and acquired antibiotic resistance inE. faecalis, since clinical isolates exhibiting resistance to multiple antibiotics are not uncommon. We performed a genetic screen using a library of transposon (Tn) mutants to identifyE. faecalisbiofilm-associated antibiotic resistance determinants. Five Tn mutants formed wild-type biofilms in the absence of antibiotics but produced decreased biofilm biomass in the presence of antibiotic concentrations that were subinhibitory to the parent strain. Genetic determinants responsible for biofilm-associated antibiotic resistance include components of the quorum-sensing system (fsrA,fsrC, andgelE) and two glycosyltransferase (GTF) genes (epaIandepaOX). We also found that the GTFs play additional roles inE. faecalisresistance to detergent and bile salts, maintenance of cell envelope integrity, determination of cell shape, polysaccharide composition, and conjugative transfer of the pheromone-inducible plasmid pCF10. TheepaOXgene is located in a variable extended region of the enterococcal polysaccharide antigen (epa) locus. These data illustrate the importance of GTFs inE. faecalisadaptation to diverse growth conditions and suggest new targets for antimicrobial design.


2020 ◽  
Author(s):  
Shogo Yoshimoto ◽  
Ayane Kawashiri ◽  
Taishi Matsushita ◽  
Satoshi Ishii ◽  
Stephan Göttig ◽  
...  

<p>The COVID-19 pandemic caused by a virus has been posing a global threat to humanity and human society. It reminded us of the horror of infectious diseases. Pathogenic bacteria also cause infectious disease, but bacteria are not as much of a threat as viruses because antibiotics are effective against them. This is changing, however, with the emergence of antibiotic-resistant bacteria. The global expansion of multidrug-resistant bacteria has become a clinical problem, and the threat of bacterial infection would come back in the near future. The overuse of antibiotics amplifies the opportunity for resistant bacteria to emerge and spread. The increased antibiotic use during this COVID-19 pandemic could also increase the threat of resistant bacteria. As an alternative to antibiotics, antibiofouling surfaces have drawn intensive research interest and have been developed. <i>Acinetobacter</i> sp. Tol 5 exhibits high adhesiveness to various surfaces through AtaA, a member of the trimeric autotransporter adhesin (TAA) family. We examined the adhesion of Tol 5 and other bacteria expressing different TAAs to antiadhesive surfaces. The results highlighted Tol 5’s stickiness through AtaA, which enables cells to adhere even to antiadhesive materials including polytetrafluoroethylene with a low surface free energy, a hydrophilic polymer brush exerting steric hindrance, and mica with an ultrasmooth surface. Tol 5 cells also adhered to a zwitterionic 2-methacryloyloxyethyl-phosphorylcholine-polymer-coated surface but were exfoliated by a weak shear stress, suggesting that exchangeable bound water molecules contribute to AtaA’s interaction with materials.</p>


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1163
Author(s):  
Christel Neut

The increase in multidrug-resistant (MDR) bacteria in hospitalized people and the hospital environment has been thoroughly documented. In contrast, little is known about their presence in the community. However, increasing evidence is showing a high level of carriage in people without infectious signs. Colonized people can later develop infections due to MDR bacteria and may be able to transmit them to susceptible people (the number of which is increasing worldwide), for example, people with comorbidities such as diabetes, cancer, or inflammatory diseases and those in extreme age groups. Risk factors for the acquisition of MDR bacteria are as follows: (1) residence or travel in countries with high levels of MDR bacteria; (2) occupational risks such as health workers or people with close contact with animals (farmers, veterinarians) who frequently use antibiotics; and (3) comorbidities. Eradication is rather difficult and, thus far, has not shown clear-cut results. Preventive measures will be important in the future with a reinforcement of hygienic measures not only in the hospital, but also in the community.


2017 ◽  
Vol 13 (01) ◽  
pp. 042-045
Author(s):  
Fatih Akın ◽  
Abdullah Yazar ◽  
Metin Doğan

Introduction Nosocomial infections are one of the main causes of morbidity and mortality. It is important to know the common infectious pathogens and their resistance profiles in intensive care units (ICUs) to determine appropriate treatment protocols. The aim of this study was to determine the epidemiological profile of microorganisms isolated in a pediatric ICU (PICU) and to determine antibiotic resistance in isolated strains. Materials and Methods This retrospective study was performed at the Meram Medical Faculty Hospital, Necmettin Erbakan University, Konya, Turkey. A total of 1,502 bacteria that were isolated from various specimens from children who were hospitalized in PICUs between January 2014 and December 2015 were included in this study to determine the isolated bacteria diversity and susceptibility to various antibiotics. Results Staphylococcus spp. was the most frequently isolated microorganism followed by Escherichia coli and Klebsiella spp., respectively. The sites where pathogens were isolated were as follows: 616 blood, (41%), 445 urine (29.6%), 60 sputum (4%), 44 cerebrospinal fluid (2.9%), 25 wound swab (1.6%), 20 tracheal aspirate (1.3%), and 26 others (1.7%). The carbapenem resistance rate was 40.8% among Pseudomonas aeruginosa isolates. Among 60 Acinetobacter baumannii isolates tested, 62% were resistant to carbapenems. Sensitivity rates of A. baumannii isolates to tigecycline and colistin were as high as 98 and 96%, respectively. Meropenem and colistin resistance rates to Klebsiella spp. were 16.2 and 15%, respectively. Conclusion In conclusion, it is essential to identify the infectious pathogens and their resistance to antibiotics especially in ICUs where infections with multidrug-resistant bacteria are frequent. Studies on this issue should be performed at appropriate time intervals.


2018 ◽  
Vol 10 (11) ◽  
pp. 3967 ◽  
Author(s):  
Ricarda Schmithausen ◽  
Sophia Schulze-Geisthoevel ◽  
Céline Heinemann ◽  
Gabriele Bierbaum ◽  
Martin Exner ◽  
...  

The holistic approach of “One Health” includes the consideration of possible links between animals, humans, and the environment. In this review, an effort was made to highlight knowledge gaps and various factors that contribute to the transmission of antibiotic-resistant bacteria between these three reservoirs. Due to the broad scope of this topic, we focused on pig production and selected “indicator bacteria”. In this context, the role of the bacteria livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) and extended spectrum beta-lactamases carrying Escherichia coli (ESBL-E) along the pig production was particularly addressed. Hotspots of their prevalence and transmission are, for example, pig stable air for MRSA, or wastewater and manure for ESBL-E, or even humans as vectors in close contact to pigs (farmers and veterinarians). Thus, this review focuses on the biotope “stable environment” where humans and animals are both affected, but also where the end of the food chain is not neglected. We provide basic background information about antibiotics in livestock, MRSA, and ESBL-bacteria. We further present studies (predominantly European studies) in tabular form regarding the risk potentials for the transmission of resistant bacteria for humans, animals, and meat differentiated according to biotopes. However, we cannot guarantee completeness as this was only intended to give a broad superficial overview. We point out sustainable biotope approaches to try to contribute to policy management as critical assessment points in pig housing conditions, environmental care, animal health, and food product safety and quality as well as consumer acceptance have already been defined.


Sign in / Sign up

Export Citation Format

Share Document