scholarly journals Antimicrobial Susceptibility Testing for Corynebacterium Species Isolated from Clinical Samples in Romania

Antibiotics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
Cristiana Cerasella Dragomirescu ◽  
Brandusa Elena Lixandru ◽  
Ileana Luminita Coldea ◽  
Olguta Nicoleta Corneli ◽  
Marina Pana ◽  
...  

Antimicrobial resistance is one of the most important public health issues. Besides classical multidrug resistance species associated with medical care involved in superficial or invasive infections, there are strains less commonly associated with hospital or outpatient setting’s infections. Non-diphtheria Corynebacterium spp. could produce infections in patients with or without immune-compromised status. The aim of our study was to determine the susceptibility to antimicrobial agents to Corynebacterium spp. from clinical samples collected from Romanian hospitalized individuals and outpatients. Twenty Corynebacterium strains were isolated and identified as Corynebacterium striatum (n = 7), Corynebacterium amycolatum (n = 7), C. urealyticum (n = 3), Corynebacterium afermentans (n = 2), and Corynebacterium pseudodiphtheriticum (n = 1). All isolates have been tested for antibiotic susceptibility by standardized disc diffusion method and minimal inhibitory concentration (MIC) tests. Seventeen isolates demonstrated multidrug resistance phenotypes. The molecular support responsible for high resistance to quinolones for ten of these strains was determined by the detection of point mutation in the gene sequence gyrA.

Author(s):  
Giorgio Silva-Santana ◽  
Cecília Maria Ferreira Silva ◽  
Julianna Giordano Botelho Olivella ◽  
Igor Ferreira Silva ◽  
Laís Menegoi Oliveira Fernandes ◽  
...  

Author(s):  
Fateme DAVARZANI ◽  
Navid SAIDI ◽  
Saeed BESHARATI ◽  
Horieh SADERI ◽  
Iraj RASOOLI ◽  
...  

Background: Pseudomonas aeruginosa is one of the most common opportunistic bacteria causing nosocomial infections, which has significant resistance to antimicrobial agents. This bacterium is a biofilm and alginate producer. Biofilm increases the bacterial resistance to antibiotics and the immune system. Therefore, the present study was conducted to investigate the biofilm formation, alginate production and antimicrobial resistance patterns in the clinical isolates of P. aeruginosa. Methods: One hundred isolates of P. aeruginosa were collected during the study period (from Dec 2017 to Jul 2018) from different clinical samples of the patients admitted to Milad and Pars Hospitals at Tehran, Iran. Isolates were identified and confirmed by phenotypic and genotypic methods. Antimicrobial susceptibility was specified by the disk diffusion method. Biofilm formation and alginate production were measured by microtiter plate and carbazole assay, respectively. Results: Sixteen isolates were resistant to all the 12 studied antibiotics. Moreover, 31 isolates were MultidrugResistant (MDR). The highest resistance rate was related to ofloxacin (36 isolates) and the least resistance was related to piperacillin-tazobactam (21 isolates). All the isolates could produce the biofilm and alginate. The number of isolates producing strong, medium and weak biofilms was equal to 34, 52, and 14, respectively. Alginate production was more than 400 μg/ml in 39 isolates, 250-400 μg/ml in 51 isolates and less than 250 μg/ml in 10 isolates. Conclusion: High prevalence of MDR, biofilm formation, and alginate production were observed among the clinical isolates of P. aeruginosa. The results also showed a significant relationship between the amount of alginate production and the level of biofilm formation.


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Seema Mittal ◽  
Pooja Singla ◽  
Antariksha Deep ◽  
Kiran Bala ◽  
Rama Sikka ◽  
...  

Aims. This study was aimed at knowing the prevalence of vancomycin and high level aminoglycoside resistance in enterococcal strains among clinical samples.Study Design. It was an investigational study.Place and Duration of Study. It was conducted on 100Enterococcusisolates, in the Department of Microbiology, Pt. BDS PGIMS, Rohtak, over a period of six months from July to December 2014.Methodology. Clinical specimens including urine, pus, blood, semen, vaginal swab, and throat swab were processed andEnterococcusisolates were identified by standard protocols. Antibiotic sensitivity testing of enterococci was performed using Kirby-Bauer disc diffusion method.Results. High level gentamicin resistance (HLGR) was more common in urine samples (41.5%) followed by blood (36%) samples. High level streptomycin resistance (HLSR) was more common in pus samples (52.6%) followed by blood samples (36%). Resistance to vancomycin was maximum in blood isolates.Conclusion. Enterococci resistant to multiple antimicrobial agents have been recognized. Thus, it is crucial for laboratories to provide accurate antimicrobial resistance patterns for enterococci so that effective therapy and infection control measures can be initiated.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Mude Shecho ◽  
Naod Thomas ◽  
Jelalu Kemal ◽  
Yimer Muktar

A cross-sectional study was carried out to determine antimicrobial drug resistance patterns of E. coli O157:H7 isolates and estimate the level of the pathogen. A total of 194 cloacae swab samples were collected randomly in two poultry farms. Standard cultural, biochemical, and serological (latex agglutination) methods were used to isolate E. coli O157:H7. The isolates were subjected to antimicrobial susceptibility testing using disc diffusion method. Out of 194 cloacae samples examined, 13.4% (n=26) were found to be positive for E. coli O157:H7. The finding indicated differences in E. coli O157:H7 infection among the different risk factors. Chicken from Adele Poultry Farm showed higher E. coli O157:H7 infection (OR = 3.89) than Haramaya University poultry farm and young birds had more infection (OR = 4.62) than adult birds. Of the total 14 antimicrobials included in the panel of study, the susceptibility results were varied with 96.15% and 0% E. coli O157:H7 isolates expressing resistance to erythromycin, clindamycin, spectinomycin, and ciprofloxacin, respectively. Multidrug resistance to more than two antimicrobial agents was detected in 24 (92.30%) of the isolates. The study showed high presence of antimicrobial resistant isolates of E. coli O157:H7. Further study is required to better understand the ecology and evolution of bacterial resistance to antimicrobial agents.


Author(s):  
Maria Muddassir ◽  
Sadaf Munir ◽  
Almas Raza ◽  
Adeel Iqbal ◽  
Muddassir Ahmed ◽  
...  

Background: Pseudomonas aeruginosa is a clinically important pathogenic microbe in hospitalized patients. It is a major cause of mortality and morbidity having a number of mechanisms that make it antibiotic resistant. Considering the dearth of antimicrobial drugs to treat infection with this pathogen, it has become a necessity to open up new arena for treatment with this organism. Recently, there has been an up rise in the number of multidrug resistant pathogenic strains of Pseudomonas aeruginosa. Objective: Isolation and identification of multidrug resistant Pseudomonas aeruginosa from wound specimens and to evaluate the antibiotic resistant strains of this microbe. Methodology: One hundred and fifty clinical samples of wound were taken from hospitalized patients at Jinnah hospital Lahore during the period of October 2019 to April 2020. In total, twenty (20) isolates of Pseudomonas aeruginosa were identified using the cultural features, morphological characteristics and various biochemical tests plus the Vitek 2 system. Blue/green, brown /blue and yellow/green pigment production showed the presence and growth of Pseudomonas aeruginosa. Results: Percentage of Pseudomonas aeruginosa in females came out to be 15% as compared to 11.42% in males. This was followed by testing susceptibility of isolates of Pseudomonas aeruginosa to various antimicrobial drugs. Piperacillin/tazobactam and meropenem showed the highest efficacy against Pseudomonas aeruginosa. Highest resistance was exhibited against trimethoprim/sulfamethoxazole which was 75%. Conclusion: Most isolates showed multidrug resistance to four or more drugs. Development of multidrug resistance has emerged as a global problem with pathogens commonly causing infections becoming increasingly resistant to antimicrobial agents.


2016 ◽  
Vol 5 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Ganesh Kumar Singh ◽  
Bigu Kumar Chaudhari ◽  
Kamal Prasad Parajuli

Background Resistance to antimicrobial agents is prevalent among Staphylococci. This has led to wide uses of macrolide-lincosamide-streptogramin B (MLSB) antibiotics to Staphylococcus aureus (S. aureus) infections. MLSB though chemically distinct, have similar target site and mode of action. The multiple mechanisms are responsible for resistance to MLSB antibiotics which can lead to clinical failure. The aim of the study was to investigate the frequency of inducible and constitutive clindamycin resistance among clinical isolates of S. aureus and their relationship with Methicillin-resistant Staphylococcus aureus (MRSA).Material & Methods A total of 336 unique Staphylococcus aureus isolates from different clinical samples obtained from patients were studied. Antibiotic susceptibility test was performed by Kirby- Bauer disc diffusion method. “D test” was performed to detect inducible clindamycin resistance as per CLSI guidelines. MRSA was detected using Cefoxitin (30μg) and results were interpreted according to CLSI criteria.Results Inducible clindamycin resistance was seen in 45 (13.39%), constitutive clindamycin resistance was seen among 58 (17.26%) while MS phenotype was observed among 38(11.30%) of isolates. Inducible resistance as well as constitutive resistance was higher among MRSA as compared to MSSA (21.11%, 4.48% and 21.11%, 12.82%respectively).Conclusion The Successful use of clindamycin for the treatment of infection caused by S. aureus can be predicted based on the result of simple and inexpensive D test.Journal of Nobel Medical CollegeVolume 5, Number 1, Issue 8, January-July 2016, 1-5


2013 ◽  
Vol 6 (1) ◽  
pp. 12-17
Author(s):  
Valentina P. Popova ◽  
Mariya P. Sredkova ◽  
Hristina H. Hitkova ◽  
Kaloyan T. Ivanov ◽  
Vladimir G. Popov

Summary Multidrug-resistant (MDR) enterococci are a growing threat. The aim of this study was to determine the species distribution and prevalence of multidrug resistance among 100 enterococcal strains, isolated from patients treated in the University Hospital in Pleven, Bulgaria. Susceptibility to 11 antimicrobial agents was determined, using the disc diffusion method according to the performance standards of Clinical Laboratory Standards Institute (CLS1), 2012. All isolates were screened for high-level aminoglycoside resistance and resistance to vancomycin according to the recommendations of CLS1, 2012. For strains with reduced susceptibility to vancomycin, minimal inhibitory concentrations (MIC) of glycopeptides were determined by Etest (Liofilchem, Italy) and by Vitek 2 automated system. Our results demonstrated decreased susceptibility of enterococci to almost all intensively used anti-enterococcal drugs. Resistance to both penicillins (ampicillin and penicillin) among E.faecium strains was significantly higher (83-87%) than among E.faecalis isolates (4-27%). HLGR was detected in 70% of E.faecium and 38% of E.faecalis isolates. All HLGR strains were foundtobemultiple-drug resistant. Of particular note was the emergence of concomitant resistance to 6 antimicrobials in almost 50% of E.faecium isolates. Despite the wide dissemination of MDR E.faecium strains penicillins in our hospital, acquired resistance to vancomycin was not found.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254048
Author(s):  
Sharianne Suepaul ◽  
Karla Georges ◽  
Chandrashekhar Unakal ◽  
Filip Boyen ◽  
Jamie Sookhoo ◽  
...  

The close contact between humans and their dogs can lead to the commingling of staphylococci and the exchange of mobile genetic elements encoding antimicrobial resistance. The objectives of this study were to determine the species distribution and antimicrobial resistance patterns of staphylococci colonizing canine pets and their owners in Trinidad. Staphylococci were isolated from canine pets and their owners and identified using MALDI-TOF mass spectrometry. Antimicrobial susceptibilities were determined using the Kirby-Bauer disc diffusion method against seven classes of antimicrobial agents. A total of 440 staphylococci were isolated from 112 canine pets and their owners, 53.4% were from canine pets and 46.6% were from owners. Twenty-four species were detected, of which, most isolates (32.5%) belonged to the Staphylococcus intermedius group (SIG). S. sciuri was the most common species of coagulase-negative staphylococci (CoNS) comprising 22.3% of all isolates. Antimicrobial resistance was highest against commonly used antimicrobials, such as penicillin (51.4%), tetracycline (26.1%) and trimethoprim/sulfamethoxazole (18.6%). These antimicrobials also comprised the most common multidrug resistance (MDR) combination. Overall, 19.1% of isolates displayed multidrug resistance. No methicillin-resistant Staphylococcus aureus (MRSA) isolates were detected. However, methicillin resistance was detected in 13.3% and 15.1% of coagulase-positive staphylococci (CoPS) and the CoNS+CoVS (combined CoNS and coagulase-variable staphylococci) group respectively. The presence of methicillin-resistant staphylococci is worrisome because there is the potential for the transfer of these strains between dogs and humans. These strains may act as a reservoir of resistance genes.


2017 ◽  
Vol 66 (2) ◽  
pp. 163-169
Author(s):  
Mona T. Kashef ◽  
Omneya M. Helmy

Aminoglycosides are used in treating a wide range of infections caused by Gram-positive and Gram-negative bacteria; however, aminoglycoside resistance is common and occurs by several mechanisms. Among these mechanisms is bacterial rRNA methylation by the 16S rRNA methyl transferase (16S-RMTase) enzymes; but data about the spread of this mechanism in Egypt are scarce. Cephalosporins are the most commonly used antimicrobial agents in Egypt; therefore, this study was conducted to determine the frequency of 16S-RMTase among third generation cephalosporin-resistant clinical isolates in Egypt. One hundred and twenty three cephalosporin resistant Gram-negative clinical isolates were screened for aminoglycosides resistance by the Kirby Bauer disk diffusion method and tested for possible production of 16S-RMTase. PCR testing and sequencing were used to confirm the presence of 16S-RMTase and the associated antimicrobial resistance determinants, as well as the genetic region surrounding the armA gene. Out of 123 isolates, 66 (53.66%) were resistant to at least one aminoglycoside antibiotic. Only one Escherichia coli isolate (E9ECMO) which was totally resistant to all tested aminoglycosides, was confirmed to have the armA gene in association with blaTEM-1, blaCTX-M-15, blaCTX-M-14 and aac(6)-Ib genes. The armA gene was found to be carried on a large A/C plasmid. Genetic mapping of the armA surrounding region revealed, for the first time, the association of armA with aac(6)-Ib on the same transposon. In conclusion, the isolation frequency of 16S-RMTase was low among the tested aminoglycoside-resistant clinical samples. However, a novel composite transposon has been detected conferring high-level aminoglycosides resistance.


Sign in / Sign up

Export Citation Format

Share Document