scholarly journals Antibiotics and Antimicrobials for Treatment of the Oral Microbiota: Myths and Facts in Research and Clinical Practice

Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 95 ◽  
Author(s):  
Gaetano Isola

In the dental field, the most common oral diseases include periodontitis, apical periodontitis, abscesses, phlegmons and pulpits, all of which are determined by the same aetiological factor, bacterial infections. For these reasons, it is important to choose the right approach through a target antibiotic therapy against oral bacteria. More specifically, during periodontitis, antibiotics are used, often in association with periodontal debridement, to reduce disease-associated periodontopathogens. However, international guidelines are not unanimous in recommending the use of local and/or systemic antimicrobials to reduce infection by oral bacteria, especially in cases in which there is a danger of spreading systemic infection such as cellulitis, diffuse swelling, and abscesses. The lack of consensus is mainly due to the side effects of antibiotic therapy in dentistry, maybe due to recent scientific evidence regarding the development of bacterial resistance to antibiotics. Therefore, the purpose of this editorial is to analyze the therapeutic effects of antibiotics against the main forms of oral and periodontal diseases, and whether there is a significant clinical benefit, especially in the long term, of antimicrobial therapies in dentistry. The most recent evidence regarding antimicrobial agents will also be discussed.

2019 ◽  
Vol 98 (4) ◽  
pp. 137-144

The paper describes the basic sources and principles of antibiotic therapy in contemporary medicine in which the ability to treat bacterial infections may be lost. The main reason for that is the increasing resistance of bacterial pathogens to antibiotics. A possible solution is to implement a comprehensive program of antibiotic stewardship incorporating adequate consideration of indication and selection of antimicrobial agents including appropriate duration and way of administration. Another important component of the comprehensive approach to bacterial resistance and antibiotic therapy is adequately applied antibiotic prophylaxis in surgery.


2011 ◽  
Vol 36 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Y Ramakrishna ◽  
H Goda ◽  
MS Baliga ◽  
AK Munshi

The association between the oral microbiota and oral diseases is well established. Various antimicrobial agents including antibiotics are commercially available against oral pathogenic bacteria. For the reasons of antibiotic resistance, their adverse effects and financial considerations in the developing countries, there is a need for alternate preventive and curative treatment options that are also safe, effective and economical. Traditional medicines have been used since ancient times for the treatment of oral diseases including dental caries, periodontal diseases that affect the majority of the population and can affect a person's overall health. Natural phytochemicals are certain organic components isolated from plants and some of these extracts are considered to be beneficial to health. They serve as antioxidants, enhance immune response,provide protection against oral cancer and other diseases and also repair DNA damage caused by smoking and other toxic exposure, and detoxify carcinogens. The natural products derived from medicinal plants have proven to be an abundant source of biologically active compounds, many of which have been the basis for the development of new lead chemicals for pharmaceuticals.They are considered to be good alternatives to synthetic chemicals. This article presents a review of natural alternatives derived from plants and plant products that can serve as a prevention and treatment option against cariogenic bacteria.


2018 ◽  
Vol 97 (10) ◽  
pp. 1092-1099 ◽  
Author(s):  
S. Jiang ◽  
J. Zeng ◽  
X. Zhou ◽  
Y. Li

Growing evidence suggests the existence of new antibiotic resistance mechanisms. Recent studies have revealed that quorum-quenching enzymes, such as MacQ, are involved in both antibiotic resistance and cell-cell communication. Furthermore, some small bacterial regulatory RNAs, classified into RNA attenuators and small RNAs, modulate the expression of resistance genes. For example, small RNA sprX, can shape bacterial resistance to glycopeptide antibiotics via specific downregulation of protein SpoVG. Moreover, some bacterial lipocalins capture antibiotics in the extracellular space, contributing to severe multidrug resistance. But this defense mechanism may be influenced by Agr-regulated toxins and liposoluble vitamins. Outer membrane porin proteins and efflux pumps can influence intracellular concentrations of antibiotics. Alterations in target enzymes or antibiotics prevent binding to targets, which act to confer high levels of resistance in respiratory/oral bacteria. As described recently, horizontal gene transfer, including conjugation, transduction and transformation, is common in respiratory/oral microflora. Many conjugative transposons and plasmids discovered to date encode antibiotic resistance proteins and can be transferred from donor bacteria to transient recipient bacteria. New classes of mobile genetic elements are also being identified. For example, nucleic acids that circulate in the bloodstream (circulating nucleic acids) can integrate into the host cell genome by up-regulation of DNA damage and repair pathways. With multidrug resistant bacteria on the rise, new drugs have been developed to combate bacterial antibiotic resistance, such as innate defense regulators, reactive oxygen species and microbial volatile compounds. This review summaries various aspects and mechanisms of antibiotic resistance in the respiratory/oral microbiota. A better understanding of these mechanisms will facilitate minimization of the emergence of antibiotic resistance.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2108
Author(s):  
Yin Wang ◽  
Hui Sun

Bacterial infections have threatened the lives of human beings for thousands of years either as major diseases or complications. The elimination of bacterial infections has always occupied a pivotal position in our history. For a long period of time, people were devoted to finding natural antimicrobial agents such as antimicrobial peptides (AMPs), antibiotics and silver ions or synthetic active antimicrobial substances including antimicrobial peptoids, metal oxides and polymers to combat bacterial infections. However, with the emergence of multidrug resistance (MDR), bacterial infection has become one of the most urgent problems worldwide. The efficient delivery of antimicrobial agents to the site of infection precisely is a promising strategy for reducing bacterial resistance. Polymeric nanomaterials have been widely studied as carriers for constructing antimicrobial agent delivery systems and have shown advantages including high biocompatibility, sustained release, targeting and improved bioavailability. In this review, we will highlight recent advances in highly efficient delivery of antimicrobial agents by polymeric nanomaterials such as micelles, vesicles, dendrimers, nanogels, nanofibers and so forth. The biomedical applications of polymeric nanomaterial-based delivery systems in combating MDR bacteria, anti-biofilms, wound healing, tissue engineering and anticancer are demonstrated. Moreover, conclusions and future perspectives are also proposed.


2019 ◽  
Vol 7 (4) ◽  
pp. 1437-1447 ◽  
Author(s):  
Mengxue Ma ◽  
Xiangmei Liu ◽  
Lei Tan ◽  
Zhenduo Cui ◽  
Xianjin Yang ◽  
...  

Implant materials are prone to bacterial infections and cause serious consequences, while traditional antibiotic therapy has a long treatment cycle and even causes bacterial resistance.


2007 ◽  
Vol 18 (1) ◽  
pp. 53-65
Author(s):  
HUGH S. LAM ◽  
PAK C NG

Breakthroughs in the management of sick newborns, including exogenous surfactant therapy, advance ventilation techniques, inhaled nitric oxide, and use of antenatal corticosteroids have led to substantial improvements in the survival of vulnerable preterm infants. Neonatal clinicians now have access to an ever increasing armament of antimicrobial agents to help combat infections. However, even with the support of such advanced therapeutic modalities, strict infection control measures and low thresholds for use of broad-spectrum antibiotics, the threat of bacterial infections especially in the most susceptible group of preterm, very low birth weight (VLBW) infants have persisted. A recent survey suggests that a significant proportion of VLBW infants (21%) have at least one episode of late-onset culture proven sepsis during their stay in the neonatal unit. Infected infants require longer hospital stay and have higher risk of developing complications, such as bronchopulmonary dysplasia and adverse long-term neurodevelopment. Neonates with infection often present with subtle and non-specific signs of sepsis. Some may be asymptomatic at the initial stages of infection. Even those infants with signs may not be clinically distinguishable from patients suffering from transient tachypnoea of the newborn, respiratory distress syndrome, apnoea of prematurity or acute exacerbation of bronchopulmonary dysplasia, during early phases of the disease. Such presentations can lead to both delayed treatment of genuinely infected infants and indiscriminate use of antibiotics in non-infected cases, resulting in acceleration of emergence of bacterial resistance, alteration of patterns of bacterial infection, and inefficient treatment of septicaemia. Both early and late-onset infections are important causes of neonatal morbidity and mortality. Methods to assist neonatal clinicians diagnose infants in the early stages of infection are, therefore, highly desirable.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Enzo A. Palombo

Oral diseases are major health problems with dental caries and periodontal diseases among the most important preventable global infectious diseases. Oral health influences the general quality of life and poor oral health is linked to chronic conditions and systemic diseases. The association between oral diseases and the oral microbiota is well established. Of the more than 750 species of bacteria that inhabit the oral cavity, a number are implicated in oral diseases. The development of dental caries involves acidogenic and aciduric Gram-positive bacteria (mutans streptococci, lactobacilli and actinomycetes). Periodontal diseases have been linked to anaerobic Gram-negative bacteria (Porphyromonas gingivalis,Actinobacillus,PrevotellaandFusobacterium). Given the incidence of oral disease, increased resistance by bacteria to antibiotics, adverse affects of some antibacterial agents currently used in dentistry and financial considerations in developing countries, there is a need for alternative prevention and treatment options that are safe, effective and economical. While several agents are commercially available, these chemicals can alter oral microbiota and have undesirable side-effects such as vomiting, diarrhea and tooth staining. Hence, the search for alternative products continues and natural phytochemicals isolated from plants used as traditional medicines are considered as good alternatives. In this review, plant extracts or phytochemicals that inhibit the growth of oral pathogens, reduce the development of biofilms and dental plaque, influence the adhesion of bacteria to surfaces and reduce the symptoms of oral diseases will be discussed further. Clinical studies that have investigated the safety and efficacy of such plant-derived medicines will also be described.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 151
Author(s):  
Tatjana Kirtikliene ◽  
Aistė Mierauskaitė ◽  
Ilona Razmienė ◽  
Nomeda Kuisiene

Bacterial resistance to antimicrobial agents plays an important role in the treatment of bacterial infections in healthcare institutions. The spread of multidrug-resistant bacteria can occur during inter- and intra-hospital transmissions among patients and hospital personnel. For this reason, more studies must be conducted to understand how resistance occurs in bacteria and how it moves between hospitals by comparing data from different years and looking out for any patterns that might emerge. Multidrug-resistant (MDR) Acinetobacter spp. was studied at 14 healthcare institutions in Lithuania during 2014, 2016, and 2018 using samples from human bloodstream infections. In total, 194 isolates were collected and identified using MALDI-TOF and VITEK2 analyzers as Acinetobacter baumannii group bacteria. After that, the isolates were analyzed for the presence of different resistance genes (20 genes were analyzed) and characterized by using the Rep-PCR and MLVA (multiple-locus variable-number tandem repeat analysis) genotyping methods. The results of the study showed the relatedness of the different Acinetobacter spp. isolates and a possible circulation of resistance genes or profiles during the different years of the study. This study provides essential information, such as variability and diversity of resistance genes, genetic profiling, and clustering of isolates, to better understand the antimicrobial resistance patterns of Acinetobacter spp. These results can be used to strengthen the control of multidrug-resistant infections in healthcare institutions and to prevent potential outbreaks of this pathogen in the future.


2020 ◽  
Vol 20 (14) ◽  
pp. 1238-1263 ◽  
Author(s):  
Jiarui Li ◽  
Pablo Fernández-Millán ◽  
Ester Boix

Background: Antimicrobial resistance (AMR) to conventional antibiotics is becoming one of the main global health threats and novel alternative strategies are urging. Antimicrobial peptides (AMPs), once forgotten, are coming back into the scene as promising tools to overcome bacterial resistance. Recent findings have attracted attention to the potentiality of AMPs to work as antibiotic adjuvants. Methods: In this review, we have tried to collect the currently available information on the mechanism of action of AMPs in synergy with other antimicrobial agents. In particular, we have focused on the mechanisms of action that mediate the inhibition of the emergence of bacterial resistance by AMPs. Results and Conclusion: We find in the literature many examples where AMPs can significantly reduce the antibiotic effective concentration. Mainly, the peptides work at the bacterial cell wall and thereby facilitate the drug access to its intracellular target. Complementarily, AMPs can also contribute to permeate the exopolysaccharide layer of biofilm communities, or even prevent bacterial adhesion and biofilm growth. Secondly, we find other peptides that can directly block the emergence of bacterial resistance mechanisms or interfere with the community quorum-sensing systems. Interestingly, the effective peptide concentrations for adjuvant activity and inhibition of bacterial resistance are much lower than the required for direct antimicrobial action. Finally, many AMPs expressed by innate immune cells are endowed with immunomodulatory properties and can participate in the host response against infection. Recent studies in animal models confirm that AMPs work as adjuvants at non-toxic concentrations and can be safely administrated for novel combined chemotherapies.


2016 ◽  
Vol 29 (2) ◽  
pp. 450-457 ◽  
Author(s):  
CARLA SILVA DA SILVEIRA ◽  
OSCARINA VIANA DE SOUSA ◽  
NORMA SUELY EVANGELISTA-BARRETO

ABSTRACT: In recent years, the emergence of resistant pathogens has complicated the treatment of bacterial infections in livestock production as well as in the medical field, due to the development of resistance mechanisms by microorganisms. The objective of this study was to delineate the antimicrobial resistance profile of Salmonella spp. strains isolated from bivalve mollusks (oysters and mussels) and from estuarine environment water of two regions of Bahia, Brazil. Twenty-seven strains, 12 isolated from bivalve mollusks and 15 from estuarine water, were tested. Eight antimicrobial agents (phenicol, beta-lactams, tetracyclines, quinolones and fluoroquinolones classes) were used for a susceptibility test, Minimum Inhibitory Concentration (MIC) and extended-spectrum beta-lactamases (ESBLs) production. Isolates showed high susceptibility to the classes of antimicrobial agents tested, with resistance only to nalidixic acid (27%), ampicillin (25%) and tetracycline (25%). Bacterial resistance was of chromosomal origin and the multidrug resistance index (MAR) among isolates of shellfish (mussels in natura) was 0.25. The MIC was found to be 100 µg/mL, 500 µg/mL and 350 µg/mL to nalidixic acid, ampicillin and tetracycline, respectively. None of the isolates presented ESBLs production. The presence of multidrug-resistant and high MIC Salmonella spp. is being conveyed in extraction areas of bivalve mollusks in the State of Bahia, Brazil.


Sign in / Sign up

Export Citation Format

Share Document