scholarly journals Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging Applications

Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 681
Author(s):  
Ângelo Luís ◽  
Ana Ramos ◽  
Fernanda Domingues

Active packaging is designed to control the development of decay- and disease-causing microorganisms and is emerging as a promising technology for extending shelf-life, maintaining food safety, reducing waste, and minimizing the risks for foodborne diseases. The goal of this work was to develop and characterize bioactive pullulan-based films, containing rockrose (Cistus ladanifer) essential oil. Among other abundant compounds (camphene, bornyl acetate and trans-pinocarveol), α-pinene was identified as the major compound of rockrose essential oil (39.25%). The essential oil presented stronger antibacterial activity against Gram-positive than against Gram-negative bacteria. The antioxidant results indicate the potential of the developed films to be used to package foods susceptible to oxidation and rancification, thus improving their shelf-life. Also, this study reflects the potential of rockrose essential oil, free or incorporated in pullulan, as a promising quorum sensing inhibitor, since it was able to interrupt intercellular communication, inhibiting violacein production. Electronic microscopy images showed the antibiofilm activity of the films with rockrose essential oil that were able to influence bacterial adhesion, which may be explained by the differences in the surface free energy of the films, as also determined.

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 121
Author(s):  
Ghita Amor ◽  
Mohammed Sabbah ◽  
Lucia Caputo ◽  
Mohamed Idbella ◽  
Vincenzo De Feo ◽  
...  

The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsulated by vibration technology, and used to prepare a new type of packaging system designed to extend the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were analyzed, as well as the morphological and biological properties of the derived BEO microcapsules (BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible films were produced, grafted with BEOMC, and characterized for their physicochemical and biological properties. Since their effective antimicrobial activity was demonstrated, these films were tested as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of their possible use to extend the shelf life of the product. It was demonstrated that the obtained active film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of the packaged food.


Author(s):  
Emine Arman Kandirmaz ◽  
◽  
Omer Bunyamin Zelzele ◽  

The use of edible biofilms in food packaging reduces the use of petrochemical polymers that are harmful to human health, such as PE, PP, PET. The second most common biopolymer in nature, chitosan is a nontoxic, nonantigenic, biocompatible and biodegradable polymer. Considering these features, it is frequently used in food packaging applications. Increasing needs for food amount and quality canalized food ındustry to fund in new packaging techniques that improve storage life and grade of foods. Active packaging systems, one of these methods, can be designed as a sensor, antimicrobial or antimigrant in order to extend the shelf life of the food product and to inform the shelf life in possible degradation. Essential oils, which are antimicrobial environmentally friendly packaging material additives, are used due to their effective biological activities. Essential oils that have known antimicrobial properties include lavender, rosemary, mint, eucalyptus and geranium. These oils are also edible. In this study, it is aimed to produce antimicrobial, ecofriendly, edible, printable biofilm for active packaging, using chitosan and peppermint essential oil. For this purpose, chitosan biofilms containing different rates (0, 1, 2.5, 5, 10%) of peppermint essential oil were produced by solvent casting method. Surface morphology were examined by SEM. The transparency of biofilms was determined by UV spectroscopy. Antimicrobial properties of the obtained films were determined against S. aureus and E. coli. Biofilms were printed with screen printing. The color, gloss, contact angle, surface tension values of all printed and unprinted samples were examined. As a result, chitosan biofilms which are loaded with peppermint essential oil were successfully produced. Biofilms are colorless, highly transparent and have good printability. It is concluded that the amount of peppermint essential oil increased inhibitory feature against S. aureus and E. coli. When the obtained results are examined, it is determined that the printable, ecofriendly, edible biofilms can be used in active food packaging applications.


2021 ◽  
Vol 4 (1) ◽  
pp. 43
Author(s):  
Reno Susanto ◽  
W Revika ◽  
Irdoni Irdoni

Edible film is a packaging that has the advantage of being easily degraded so that it does not cause environmental problems such as plastic waste which can pollute the environment. Edible film is considered to have good prospects for application in food ingredients, one of which is meat, because meat has a limited shelf life. The addition of antimicrobial ingredients to the edible film in the form of essential oil of basil leaves is useful for reducing microbial growth. The purpose of this study was to make edible films to extend the shelf life of frozen meat, utilize banana peels and durian seeds as the main ingredients for making edible films and use basil essential oil as an antimicrobial agent. The stages of activities carried out in this study included the preparation of raw materials for waste banana peels, durian seeds, and basil leaves. This stage includes the extraction process of each ingredient that produces pectin from banana peels, starch from durian seeds, and essential oil from basil leaves. Furthermore, the making of edible films from these raw materials varied the ratio between the mass of pectin and starch. The formed edible films were analyzed using FTIR, attractiveness test, and microbial growth testing by comparing meat coated with edible film and meat not coated with edible film. The characteristics of the edible film produced are 0.1 mm thick with a tensile strength value of 64.65 MPa - 75.34 MPa and a percent elongation value of 0.318% - 0.36%. The best edible film was produced at a ratio of 4: 1 (pectin: starch) with the addition of antimicrobials which had a film thickness of 0.1 mm with a tensile strength value of 75.34 MPa and 0.35% elongation percent.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 390
Author(s):  
Siti Hajar Othman ◽  
Nur Fitrah Liyana Othman ◽  
Ruzanna Ahmad Shapi’i ◽  
Siti Hajar Ariffin ◽  
Khairul Faezah Md. Yunos

This work aims to develop corn starch/chitosan nanoparticles/thymol (CS/CNP/Thy) bio-nanocomposite films as potential food packaging materials that can enhance the shelf life of food. CS/CNP/Thy bio-nanocomposite films were prepared by the addition of different concentrations of thymol (0, 1.5, 3.0, 4.5 w/w%) using a solvent casting method. The resulting films were characterized in terms of optical, mechanical, and water vapor permeability (WVP) properties. The addition of thymol was found to reduce the tensile strength (TS), elongation at break (EAB), and Young’s modulus (YM) of the films. Generally, the increment in the concentration of thymol did not significantly affect the TS, EAB, and YM values. The addition of 1.5 w/w% thymol increased the WVP of the films but the WVP reduced with the increase in thymol concentrations. CS/CNP/Thy-3% bio-nanocomposite films demonstrated the potential to lengthen the shelf life of cherry tomatoes packed with the films, whereby the cherry tomatoes exhibited no significant changes in firmness and the lowest weight loss. In addition, no mold growth was observed on the sliced cherry tomatoes that were in direct contact with the films during 7 days of storage, proving the promising application of the films as active food packaging materials.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1364
Author(s):  
Manar Abdalrazeq ◽  
Nidal Jaradat ◽  
Mohammad Qadi ◽  
C. Valeria L. Giosafatto ◽  
Eliana Dell’Olmo ◽  
...  

The present study aimed to produce bio-active packaging materials made of whey proteins (WPs) and essential oil (EO) extracted from Thymbra (Satureja capitata, L.), one of the most popular Palestinian wild plants. In this study, two different Thymbra leaves from Nablus and Qabatiya in Palestine were collected and analyzed for EOs by gas chromatography and mass spectrometry. Based on the analysis, two EOs, namely, TEO1 and TEO2, were extracted, and it was found that both samples primarily contain γ-terpinene and carvacrol, whereas p-cymene was detected only in TEO1. The antimicrobial activity of TEO1 and TEO2 was evaluated by microbroth microdilution assays against pathogenic bacteria and yeast. Based on the results, TEO1 exhibited potent antimicrobial activity against the test strains. Besides, TEO1 was chosen to functionalize WP-based films at different concentrations (0.1%, 0.4%, and 0.8% v/v of Film Forming Solutions). Film mechanical property investigation showed a marked reduction in the tensile strength and Young’s modulus at 0.8% TEO1. In contrast, its elongation at break value was significantly (p < 0.05) increased due to the plasticizing effect of the EO. Moreover, the film transparency was found to be significantly (p < 0.05) reduced by increasing TEO1 concentrations. Finally, microbiological investigations indicated that film antimicrobial activity against both gram-positive and gram-negative bacteria increased dose-dependently. The overall results open interesting perspectives for employing these films as preservative materials in food packaging.


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


2018 ◽  
Vol 16 (S1) ◽  
pp. S48-S54
Author(s):  
Y. Ez zoubi ◽  
S. Lairini ◽  
A. Farah ◽  
K. Taghzouti ◽  
A. El Ouali Lalami

The purpose of this study was to determine the chemical composition and to evaluate the antioxidant and antibacterial effects of the Moroccan Artemisia herba-alba Asso essential oil against foodborne pathogens. The essential oil of Artemisia herba-alba was analyzed by gas chromatography coupled with mass spectroscopy. The antibacterial activity was assessed against three bacterial strains isolated from foodstuff and three bacterial strains referenced by the ATCC (American Type Culture Collection) using the disk diffusion assay and the macrodilution method. The antioxidant activity was evaluated using the DPPH (2, 2-diphenyl-1- picrylhydrazyl) method. The fourteen compounds of the Artemisia herba-alba essential oil were identified; the main components were identified as β-thujone, chrysanthenone, α-terpineol, α-thujone, α-pinene, and bornyl acetate. The results of the antibacterial activity obtained showed a sensitivity of the different strains to Artemisia herba-alba essential oil with an inhibition diameter of 8.50 to 17.00 mm. Concerning the MICs (minimum inhibitory concentrations), the essential oil exhibited much higher antibacterial activity with MIC values of 2.5 μl/ml against Bacillus subtilis ATCC and Lactobacillus sp. The essential oil was found to be active by inhibiting free radicals with an IC50 (concentration of an inhibitor where the response is reduced by half) value of 2.9 μg/ml. These results indicate the possible use of the essential oil on food systems as an effective inhibitor of foodborne pathogens, as a natural antioxidant, and for potential pharmaceutical applications. However, further research is needed in order to determine the toxicity, antibacterial, and antioxidant effects in edible products.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gamze Göger ◽  
Muhammed Allak ◽  
Ali Şen ◽  
Fatih Göger ◽  
Mehmet Tekin ◽  
...  

Abstract Phytochemical profiles of essential oil (EO), fatty acids, and n-hexane (CAH), diethyl ether (CAD), ethyl acetate (CAE) and methanol extracts (CAM) of Cota altissima L. J. Gay (syn. Anthemis altissima L.) were investigated as well as their antioxidant, anti-inflammatory, antidiabetic and antimicrobial activites. The essential oil was characterized by the content of acetophenone (35.8%) and β-caryophyllene (10.3%) by GC-MS/FID. Linoleic and oleic acid were found as main fatty acids. The major constituents of the extracts were found to be 5-caffeoylquinic acid, 3,5-dicaffeoylquinic acid, isorhamnetin glucoside, quercetin and quercetin glucoside by LC-MS/MS. Antioxidant activities of the extracts were determined by scavenging of DPPH and ABTS free radicals. Also, the inhibitory effects on lipoxygenase and α-glucosidase enzymes were determined. Antimicrobial activity was evaluated against Gram positive, Gram negative bacteria and yeast pathogens. CAM showed the highest antioxidant activity against DPPH and ABTS radicals with IC50 values of 126.60 and 144.40 μg/mL, respectively. In the anti-inflammatory activity, CAE demonstrated the highest antilipoxygenase activity with an IC50 value of 105.40 μg/mL, whereas, CAD showed the best inhibition of α-glucosidase with an IC50 value of 396.40 μg/mL in the antidiabetic activity. CAH was effective against Staphylococcus aureus at MIC = 312.5 µg/mL. This is the first report on antidiabetic, anti-inflammatory and antimicrobial activities of different extracts of C. altissima.


Sign in / Sign up

Export Citation Format

Share Document