scholarly journals Nerolidol Attenuates Oxidative Stress, Inflammation, and Apoptosis by Modulating Nrf2/MAPK Signaling Pathways in Doxorubicin-Induced Acute Cardiotoxicity in Rats

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 984
Author(s):  
Seenipandi Arunachalam ◽  
M. F. Nagoor Meeran ◽  
Sheikh Azimullah ◽  
Charu Sharma ◽  
Sameer N. Goyal ◽  
...  

The clinical usage of doxorubicin (DOX), a potent anthracycline antineoplastic drug, is often limited by its cardiotoxic effects. Thus, for improving usage of DOX, the aim of this study was to assess the cardioprotective effects of nerolidol (NERO) in a rat model of DOX-induced acute cardiotoxicity and examine underlying molecular mechanisms that contribute to these effects. To induce acute cardiotoxicity male albino Wistar rats were injected with single dose intraperitoneal DOX (12.5 mg/kg). The rats were treated with NERO (50 mg/kg, orally) for five days. DOX-injected rats showed elevated levels of cardiac marker enzymes and enhanced oxidative stress markers along with altered Nrf2/Keap1/HO-1 signaling pathways. DOX administration also induced the activation of NF-κB/MAPK signaling and increased the levels and expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) as well as expression of inflammatory mediators (iNOS and COX-2) in the heart. DOX also triggered DNA damage and apoptotic cell death in the myocardium. Additionally, histological studies revealed structural alterations of the myocardium. NERO treatment exhibited protection against the deleterious results of DOX on myocardium, as evidenced by the restoration of altered biochemical parameters, mitigated oxidative stress, inflammation, and apoptosis. The findings of the present study demonstrate that NERO provides cardioprotective effects against DOX-induced acute cardiotoxicity attributed to its potent antioxidant, anti-inflammatory, and antiapoptotic activities through modulating cellular signaling pathways.

2021 ◽  
pp. 074823372110440
Author(s):  
Mohaddeseh Mohammadi-Sardoo ◽  
Ali Mandegary ◽  
Seyed Noureddin Nematollahi-Mahani ◽  
Mahshid Moballegh Nasery ◽  
Mohammad Nabiuni ◽  
...  

Mancozeb (MZB) is a worldwide fungicide for the management of fungal diseases in agriculture and industrial contexts. Human exposure occurs by consuming contaminated plants, drinking water, and occupational exposure. There are reports on MZB’s reprotoxicity such as testicular structure damage, sperm abnormalities, and decrease in sperm parameters (number, viability, and motility), but its molecular mechanism on apoptosis in testis remains limited. To investigate the molecular mechanisms involved in male reprotoxicity induced by MZB, we used primary cultures of mouse Sertoli–germ cells. Cells were exposed to MZB (1.5, 2.5, and 3.5 μM) for 3 h to evaluate viability by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, reactive oxygen species (ROS) generation, and oxidative stress parameters (lipid peroxidation). Cell death and mitogen-activated protein kinase (MAPK) signaling were measured in these cells using flow cytometry and western blotting. In addition, some groups were exposed to N-acetylcysteine (NAC, 5 mM) in the form of co-treatment with MZB. Mancozeb reduced viability and increased the level of intracellular ROS, p38 and c-Jun N-terminal kinases (JNK) MAPK proteins phosphorylation, and apoptotic cell death, which could be blocked by NAC as an inhibitor of oxidative stress. The present study indicated for the first time the toxic manifestations of MZB on the Sertoli–germ cell co-culture. Redox imbalance and p38 and JNK signaling pathway activation might play critical roles in MZB-induced apoptosis in the male reproductive system.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lingyu Yang ◽  
Dehai Xian ◽  
Xia Xiong ◽  
Rui Lai ◽  
Jing Song ◽  
...  

Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerousin vitroandin vivostudies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs.


2018 ◽  
Vol 64 (12) ◽  
pp. 937-944 ◽  
Author(s):  
Zhimin Duan ◽  
Qing Chen ◽  
Rong Zeng ◽  
Leilei Du ◽  
Caixia Liu ◽  
...  

The prevalence of Candida infection induced by non-albicans Candida (NAC) species is increasing. However, as a common NAC species, C. tropicalis has received much less study in terms of host immunity than C. albicans has. In this study, we evaluated the pro-inflammatory cytokine responses evoked by C. tropicalis and determined whether dectin-1 and downstream NF-κB and mitogen-activated protein kinases (MAPKs) signaling pathways played roles in inflammation in human peripheral blood mononuclear cells (PBMCs) and THP-1 macrophage-like cells. Exposure of PBMCs and THP-1 macrophage-like cells to C. tropicalis led to the enhanced gene expression and secretion of TNF-α and IL-6 in a time- and dose-dependent manner. THP-1 macrophage-like cells being challenged by C. tropicalis resulted in the activation of the NF-κB, p38, and ERK1/2 MAPK signaling pathways. We also found that the expression of dectin-1 was increased with C. tropicalis treatment. These data reveal that dectin-1 may play a role in sensing the inflammation response induced by C. tropicalis and that NF-κB and MAPK are involved in the downstream signaling pathways in macrophages.


2018 ◽  
Vol 44 (4) ◽  
pp. 530-538
Author(s):  
Aysun Çetin ◽  
İhsan Çetin ◽  
Semih Yılmaz ◽  
Ahmet Şen ◽  
Göktuğ Savaş ◽  
...  

Abstract Background Limited research is available concerning the relationship between oxidative stress and inflammation parameters, and simultaneously the effects of rosuvastatin on these markers in patients with hypercholesterolemia. We aimed to investigate the connection between cytokines and oxidative stress markers in patients with hypercholesterolemia before and after rosuvastatin treatment. Methods The study consisted of 30 hypercholesterolemic patients diagnosed with routine laboratory tests and 30 healthy participants. The lipid parameters, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), paraoxonase-1 (PON1) and malondialdehyde (MDA) levels in controls and patients with hypercholesterolemia before and after 12-week treatment with rosuvastatin (10 mg/kg/day), were analyzed by means of enzyme-linked immunosorbent assay. Results It was found that a 12-week cure with rosuvastatin resulted in substantial reductions in IL-1β, IL-6 and TNF-α and MDA levels as in rising activities of PON1 in patients with hypercholesterolemia. Before treatment, the PON1 levels were significantly negatively correlated with TNF-α and IL-6 in control group, while it was positively correlated with TNF-α in patients. Conclusion Our outcomes provide evidence of protected effect of rosuvastatin for inflammation and oxidative damage. It will be of great interest to determine whether the correlation between PON1 and cytokines has any phenotypic effect on PON1.


2018 ◽  
Vol 46 (6) ◽  
pp. 2412-2420 ◽  
Author(s):  
Hayam G Sayyed ◽  
Naglaa K. Idriss ◽  
Marwa A. Gaber ◽  
Sherif Sayed ◽  
Rasha Ahmed

Background/Aims: Ultrasound-guided supraclavicular brachial plexus block (BPB) has come into wider use as a regional anesthetic during upper limb operations. This study assessed the neurological and hemodynamic changes and gene expression after co-administration of midazolam or neostigmine with bupivacaine during supraclavicular BPB. Methods: The study involved 90 adults divided into three groups: control (bupivacaine), midazolam (bupivacaine plus midazolam), and neostigmine (bupivacaine plus neostigmine). Blood samples were taken and interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) mRNA levels were measured by real-time PCR, and oxidative stress markers were identified. In addition to the hemodynamic variables, the onset and duration of sensory and motor blockades, duration of analgesia, pain scores, time of first request for an analgesic, and amounts of analgesics ingested were evaluated. Results: Compared with the control and neostigmine groups, the midazolam group experienced longer sensory and motor blockades, prolonged analgesia, lower pain scores at 12 h and 24 h, and lower need for postoperative analgesics. Moreover, the midazolam group exhibited lower oxidative stress markers with a higher fold change in IL-6 and TNF-α mRNA levels. Conclusion: Midazolam co-administered with bupivacaine provided better analgesic quality than did neostigmine with bupivacaine. This might be due to its superior antioxidant and anti-inflammatory effects.


2021 ◽  
Vol 12 ◽  
Author(s):  
De Jin ◽  
Xuedong An ◽  
Yuqing Zhang ◽  
Shenghui Zhao ◽  
Liyun Duan ◽  
...  

Background: Coronavirus Disease 2019 (COVID-19) is still a relevant global problem. Although some patients have recovered from COVID-19, the sequalae to the SARS-CoV-2 infection may include pulmonary fibrosis, which may contribute to considerable economic burden and health-care challenges. Convalescent Chinese Prescription (CCP) has been widely used during the COVID-19 recovery period for patients who were at high risk of pulmonary fibrosis and is recommended by the Diagnosis and Treatment Protocol for COVID-19 (Trial Version sixth, seventh). However, its underlying mechanism is still unclear.Methods: In this study, an integrated pharmacology approach was implemented, which involved evaluation of absorption, distribution, metabolism and excretion of CCP, data mining of the disease targets, protein-protein interaction (PPI) network construction, and analysis, enrichment analysis, and molecular docking simulation, to predict the bioactive components, potential targets, and molecular mechanism of CCP for pulmonary fibrosis associated with SARS-CoV-2 infection.Results: The active compound of CCP and the candidate targets, including pulmonary fibrosis targets, were obtained through database mining. The Drug-Disease network was constructed. Sixty-five key targets were identified by topological analysis. The findings of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation suggested that the VEGF, Toll-like 4 receptor, MAPK signaling pathway, and TGF-β1 signaling pathways may be involved in pulmonary fibrosis. In the molecular docking analyses, VEGF, TNF-α, IL-6, MMP9 exhibited good binding activity. Findings from our study indicated that CCP could inhibit the expression of VEGF, TNF-α, IL-6, MMP9, TGF-β1 via the VEGF, Toll-like 4 receptor, MAPK, and TGF-β1 signaling pathways.Conclusion: Potential mechanisms involved in CCP treatment for COVID-19 pulmonary fibrosis associated with SARS-CoV-2 infection involves multiple components and multiple target points as well as multiple pathways. These findings may offer a profile for further investigations of the anti-fibrotic mechanism of CCP.


2021 ◽  
Author(s):  
Mengyue Tian ◽  
Ke Li ◽  
Ruonan Liu ◽  
Jinliang Du ◽  
Dongmin Zou ◽  
...  

Abstract Background: Laminitis, an inflammation of the claw laminae, is one of the major causes of bovine lameness, which can lead to enormous economic losses and animal welfare problems in dairy farms. Angelica polysaccharide (AP) is proved to possess anti-inflammatory properties. But the role of AP on inflammatory response of the claw dermal cells has not been reported. The aim of this study was to investigate the anti-inflammatory effects of AP on lipopolysaccharide (LPS)-induced primary claw dermal cells of dairy cow and clarify the potential mechanisms. In the current research, the primary claw dermal cells were exposed to gradient concentrations of AP (10, 50, 100 µg/mL) in the presence of 10 µg/mL LPS. The levels of cytokines and nitric oxide (NO) were detected with ELISA and Griess colorimetric method. The mRNA expressions of TLR4, MyD88 and chemokines were measured with qPCR. The activation of NF-κB and MAPK signaling pathways was detected with western blotting.Results: The results indicated that AP reduced the production of inflammatory mediators (TNF-α, IL-1β, IL-6 and NO), downregulated the mRNA expression of TLR4, MyD88 and some pro-inflammatory chemokines (CCL2, CCL20, CXCL2, CXCL8, CXCL10), and suppressed the NF-κB and MAPK signaling pathways evidenced by inhibition of the phosphorylation of IκBα, p65 and ERK, JNK, p38.Conclusions: Our results demonstrated that AP may exert its anti-inflammatory effects on claw dermal cells of dairy cow by regulating the NF-κB and MAPK signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document