scholarly journals Transcriptomics Underlying Pulmonary Ozone Pathogenesis Regulated by Inflammatory Mediators in Mice

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1489
Author(s):  
Hye-Youn Cho ◽  
Anne E. Jedlicka ◽  
Frederick H. Chang ◽  
Jacqui Marzec ◽  
Alison K. Bauer ◽  
...  

Ozone (O3) is the predominant oxidant air pollutant associated with airway inflammation, lung dysfunction, and the worsening of preexisting respiratory diseases. We previously demonstrated the injurious roles of pulmonary immune receptors, tumor necrosis factor receptor (TNFR), and toll-like receptor 4, as well as a transcription factor NF-κB, in response to O3 in mice. In the current study, we profiled time-dependent and TNFR- and NF-κB-regulated lung transcriptome changes by subacute O3 to illuminate the underlying molecular events and downstream targets. Mice lacking Tnfr1/Tnfr2 (Tnfr-/-) or Nfkb1 (Nfkb1-/-) were exposed to air or O3. Lung RNAs were prepared for cDNA microarray analyses, and downstream and upstream mechanisms were predicted by pathway analyses of the enriched genes. O3 significantly altered the genes involved in inflammation and redox (24 h), cholesterol biosynthesis and vaso-occlusion (48 h), and cell cycle and DNA repair (48–72 h). Transforming growth factor-β1 was a predicted upstream regulator. Lack of Tnfr suppressed the immune cell proliferation and lipid-related processes and heightened epithelial cell integrity, and Nfkb1 deficiency markedly suppressed lung cell cycle progress during O3 exposure. Common differentially regulated genes by TNFR and NF-κB1 (e.g., Casp8, Il6, and Edn1) were predicted to protect the lungs from cell death, connective tissue injury, and inflammation. Il6-deficient mice were susceptible to O3-induced protein hyperpermeability, indicating its defensive role, while Tnf-deficient mice were resistant to overall lung injury caused by O3. The results elucidated transcriptome dynamics and provided new insights into the molecular mechanisms regulated by TNFR and NF-κB1 in pulmonary subacute O3 pathogenesis.

2020 ◽  
Vol 318 (1) ◽  
pp. F209-F215 ◽  
Author(s):  
Jun Zhou ◽  
Changlong An ◽  
Xiaogao Jin ◽  
Zhaoyong Hu ◽  
Robert L. Safirstein ◽  
...  

Cisplatin can cause acute kidney injury (AKI), but the molecular mechanisms are not well understood. The objective of the present study was to examine the role of transforming growth factor-β-activated kinase-1 (TAK1) in the pathogenesis of cisplatin-induced AKI. Wild-type mice and proximal tubule TAK1-deficient mice were treated with vehicle or cisplatin. Compared with wild-type control mice, proximal tubule TAK1-deficient mice had less severe kidney dysfunction, tubular damage, and apoptosis after cisplatin–induced AKI. Furthermore, conditional disruption of TAK1 in proximal tubular epithelial cells reduced caspase-3 activation, proinflammatory molecule expression, and JNK phosphorylation in the kidney in cisplatin-induced AKI. Taken together, cisplatin activates TAK1-JNK signaling pathway to promote tubular epithelial cell apoptosis and inflammation in cisplatin-induced AKI. Targeting TAK1 could be a novel therapeutic strategy against cisplatin-induced AKI.


2020 ◽  
Vol 10 (4) ◽  
pp. 204589402096535
Author(s):  
Pratap Karki ◽  
Konstantin G. Birukov ◽  
Anna A. Birukova

Extracellular histones released from injured or dying cells following trauma and other severe insults can act as potent damage-associated molecular patterns. In fact, elevated levels of histones are present in human circulation in hyperinflammatory states such as acute respiratory distress syndrome and sepsis. The molecular mechanisms owing to histone-induced pathologies are at the very beginning of elucidating. However, neutralization of histones with antibodies, histone-binding or histone-degrading proteins, and heparan sulfates have shown promising therapeutic effects in pre-clinical acute respiratory distress syndrome and sepsis models. Various cell types undergoing necrosis and apoptosis or activated neutrophils forming neutrophil extracellular traps have been implicated in excessive release of histones which further augments tissue injury and may culminate in multiple organ failure. At the molecular level, an uncontrolled inflammatory cascade has been considered as the major event; however, histone-activated coagulation and thrombosis represent additional pathologic events reflecting coagulopathy. Furthermore, epigenetic regulation and chemical modifications of circulating histones appear to be critically important in their biological functions as evidenced by increased cytotoxicity associated with citrullinated histone. Herein, we will briefly review the current knowledge on the role of histones in acute respiratory distress syndrome and sepsis, and discuss the future potential of anti-histone therapy for treatment of these life-threatening disorders.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1933-1939 ◽  
Author(s):  
Tarja Jonuleit ◽  
Heiko van der Kuip ◽  
Cornelius Miething ◽  
Heike Michels ◽  
Michael Hallek ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a malignant stem cell disease characterized by an expansion of myeloid progenitor cells expressing the constitutively activated Bcr-Abl kinase. This oncogenic event causes a deregulation of apoptosis and cell cycle progression. Although the molecular mechanisms protecting from apoptosis in CML cells are well characterized, the cell cycle regulatory event is poorly understood. An inhibitor of the cyclin-dependent kinases, p27, plays a central role in the regulation of growth factor dependent proliferation of hematopoietic cells. Therefore, we have analyzed the influence of Bcr-Abl in the regulation of p27 expression in various hematopoietic cell systems. An active Bcr-Abl kinase causes down-regulation of p27 expression in murine Ba/F3 cells and human M07 cells. Bcr-Abl blocks up-regulation of p27 after growth factor withdrawal and serum reduction. In addition, p27 induction by transforming growth factor-beta (TGF-β) is completely blocked in Bcr-Abl positive M07/p210 cells. This deregulation is directly mediated by the activity of the Bcr-Abl kinase. A Bcr-Abl kinase inhibitor completely abolishes p27 down-regulation by Bcr-Abl in both Ba/F3 cells transfected either with a constitutively active Bcr-Abl or with a temperature sensitive mutant. The down-regulation of p27 by Bcr-Abl depends on proteasomal degradation and can be blocked by lactacystin. Overexpression of wild-type p27 partially antagonizes Bcr-Abl–induced proliferation in Ba/F3 cells. We conclude that Bcr-Abl promotes cell cycle progression and activation of cyclin-dependent kinases by interfering with the regulation of the cell cycle inhibitory protein p27.


2015 ◽  
Vol 129 (12) ◽  
pp. 1173-1193 ◽  
Author(s):  
Simona Gallo ◽  
Valentina Sala ◽  
Stefano Gatti ◽  
Tiziana Crepaldi

Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the treatment of both coronary and peripheral artery disease.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4229-4229
Author(s):  
Mani Mohindru ◽  
Perry Pahanish ◽  
Robert Collins ◽  
Tony Navas ◽  
Linda Higgins ◽  
...  

Abstract Cytokines play important roles in the regulation of normal hematopoiesis and a balance between the actions of hematopoietic growth factors and myelosuppressive factors is required for optimal production of cells of different hematopoietic lineages. Even though the effects of Type I Interferons (IFNs α,β) and Transforming Growth Factor βs (TGF βs) as negative regulators of hematopoiesis are well documented, the exact molecular mechanisms by which such effects occur remain unknown. Our previous studies had shown that pharmacological inhibition of the p38 MAPK with commercially available inhibitors SB203580 and SB 202190 was able to reverse the myelosuppresion caused by IFN and TGF β. These inhibitors cannot be used in human studies due to toxicity and are also questioned for their selectivity in inhibiting the p38 MAPK. Thus, to confirm the role of p38 MAPK in regulating hematopoeisis, we conducted experiments with SD-282, a more potent and selective inhibitor of p38 α. SD-282 also performs very similarly in animal and cell models to a p38 inhibitor now in the clinic. Our results show that SD-282 is able to inhibit p38 MAPK selectively in primary human erythroid progenitors (at CFU-E stage of maturation) and suppress activation of downstream kinase MapKapK-2 after IFN α stimulation. In methycellulose clonogenic assays with mobilized CD34+ cells, IFN α treatment resulted in marked suppression of both erythroid (BFU-E) and myeloid (CFU-GM) colonies, which could be reversed in the presence of p38 inhibitor SD-282. In a similar manner TGF-β2 was not able to effectively inhibit both erythroid and myeloid colonies in the presence of p38 blockade by SD-282. In further studies, we demonstrate that the primary mechanism by which the p38 MAPK pathway mediates IFN mediated hematopoietic suppression is by regulation of cell cycle progression and is unrelated to induction of apoptosis. Treatment with p38 inhibitors led to significantly lesser numbers of cells in G0/G1 phase of cell cycle arrest induced by exposure to IFN α. Altogether, these findings confirm that the p38 MAPK signalling pathway is a common effector for type I IFN and TGF beta signaling in human hematopoietic progenitors and plays a critical role in the induction of the suppressive effects of these cytokines on normal hematopoiesis. Our studies also provide a rationale for the use of SD-282 and other p38 inhibitors in cytokine mediated hematological diseases.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1933-1939 ◽  
Author(s):  
Tarja Jonuleit ◽  
Heiko van der Kuip ◽  
Cornelius Miething ◽  
Heike Michels ◽  
Michael Hallek ◽  
...  

Chronic myeloid leukemia (CML) is a malignant stem cell disease characterized by an expansion of myeloid progenitor cells expressing the constitutively activated Bcr-Abl kinase. This oncogenic event causes a deregulation of apoptosis and cell cycle progression. Although the molecular mechanisms protecting from apoptosis in CML cells are well characterized, the cell cycle regulatory event is poorly understood. An inhibitor of the cyclin-dependent kinases, p27, plays a central role in the regulation of growth factor dependent proliferation of hematopoietic cells. Therefore, we have analyzed the influence of Bcr-Abl in the regulation of p27 expression in various hematopoietic cell systems. An active Bcr-Abl kinase causes down-regulation of p27 expression in murine Ba/F3 cells and human M07 cells. Bcr-Abl blocks up-regulation of p27 after growth factor withdrawal and serum reduction. In addition, p27 induction by transforming growth factor-beta (TGF-β) is completely blocked in Bcr-Abl positive M07/p210 cells. This deregulation is directly mediated by the activity of the Bcr-Abl kinase. A Bcr-Abl kinase inhibitor completely abolishes p27 down-regulation by Bcr-Abl in both Ba/F3 cells transfected either with a constitutively active Bcr-Abl or with a temperature sensitive mutant. The down-regulation of p27 by Bcr-Abl depends on proteasomal degradation and can be blocked by lactacystin. Overexpression of wild-type p27 partially antagonizes Bcr-Abl–induced proliferation in Ba/F3 cells. We conclude that Bcr-Abl promotes cell cycle progression and activation of cyclin-dependent kinases by interfering with the regulation of the cell cycle inhibitory protein p27.


2018 ◽  
Vol 19 (8) ◽  
pp. 2239 ◽  
Author(s):  
Sabrina Ehnert ◽  
Caren Linnemann ◽  
Romina Aspera-Werz ◽  
Daria Bykova ◽  
Sara Biermann ◽  
...  

The cytokines secreted by immune cells have a large impact on the tissue, surrounding a fracture, e.g., by attraction of osteoprogenitor cells. However, the underlying mechanisms are not yet fully understood. Thus, this study aims at investigating molecular mechanisms of the immune cell-mediated migration of immature primary human osteoblasts (phOBs), with transforming growth factor beta (TGF-β), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) and focal adhesion kinase (FAK) as possible regulators. Monocyte- and macrophage (THP-1 cells ± phorbol 12-myristate 13-acetate (PMA) treatment)-conditioned media, other than the granulocyte-conditioned medium (HL-60 cells + dimethyl sulfoxide (DMSO) treatment), induce migration of phOBs. Monocyte- and macrophage (THP-1 cells)-conditioned media activate Smad3-dependent TGF-β signaling in the phOBs. Stimulation with TGF-β promotes migration of phOBs. Furthermore, TGF-β treatment strongly induces NOX4 expression on both mRNA and protein levels. The associated reactive oxygen species (ROS) accumulation results in phosphorylation (Y397) of FAK. Blocking TGF-β signaling, NOX4 activity and FAK signaling effectively inhibits the migration of phOBs towards TGF-β. In summary, our data suggest that monocytic- and macrophage-like cells induce migration of phOBs in a TGF-β-dependent manner, with TGF-β-dependent induction of NOX4, associated production of ROS and resulting activation of FAK as key mediators.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Dongli Song ◽  
Li Tang ◽  
Jianan Huang ◽  
Lu Wang ◽  
Tao Zeng ◽  
...  

Abstract Background Telocytes (TCs) have the capacity of cell–cell communication with adjacent cells within the tissue, contributing to tissue repair and recovery from injury. The present study aims at investigating the molecular mechanisms by which the TGFβ1-ITGB1-PI3K signal pathways regulate TC cycle and proliferation. Methods Gene expression of integrin (ITG) family were measured in mouse primary TCs to compare with other cells. TC proliferation, movement, cell cycle, and PI3K isoform protein genes were assayed in ITGB1-negative or positive mouse lung TCs treated with the inhibition of PI3Kp110α, PI3Kα/δ, PKCβ, or GSK3, followed by TGFβ1 treatment. Results We found the characters and interactions of ITG or PKC family member networks in primary mouse lung TCs, different from other cells in the lung tissue. The deletion of ITGB1 changed TCs sensitivity to treatment with multifunctional cytokines or signal pathway inhibitors. The compensatory mechanisms occur among TGFβ1-induced PI3Kp110α, PI3Kα/δ, PKCβ, or GSK3 when ITGB1 gene was deleted, leading to alterations of TC cell cycle and proliferation. Of those PI3K isoform protein genes, mRNA expression of PIK3CG altered with ITGB1-negative TC cycle and proliferation. Conclusion TCs have strong capacity of proliferation through the compensatory signaling mechanisms and contribute to the development of drug resistance due to alterations of TC sensitivity.


2019 ◽  
Author(s):  
Jeong-Hwan Yoon ◽  
Eunjin Bae ◽  
Katsuko Sudo ◽  
Jin Soo Han ◽  
Seok Hee Park ◽  
...  

SUMMARYTransforming growth factor (TGF)-β plays crucial roles in differentiation of dendritic cells (DC). However, molecular mechanisms how TGF-β regulates DC differentiation remain largely unknown. Here, we show that selective repression of one of the TGF-β receptor-regulated SMADs (R-SMADs), SMAD3 directs conventional DC (cDC) differentiation, whereas maintenance of SMAD3 is indispensable for plasmacytoid DC (pDC) differentiation. Expression of SMAD3 was specifically downregulated in CD115+common DC progenitor (CDP), pre-cDCs and cDCs. SMAD3 deficient mice showed a significant reduction in pre-pDCs and pDCs with increased CDP, pre-cDCs and cDCs. SMAD3 upregulated the pDC-related genes: SPI-B, E2-2 and IKAROS, while it repressed FLT3 and the cDC-related genes: IRF4 and ID2. STAT3 and a SMAD transcriptional co-repressor, c-SKI repressed SMAD3 for cDC differentiation, whereas canonical SMAD-mediated TGF-β signalling maintained SMAD3 for pDC differentiation. Thus, SMAD3 is the pivotal determinant to bifurcate cDC and pDC differentiation in the steady-state condition.


2020 ◽  
Vol 20 (6) ◽  
pp. 734-750
Author(s):  
Wallax A.S. Ferreira ◽  
Rommel R. Burbano ◽  
Claudia do Ó. Pessoa ◽  
Maria L. Harada ◽  
Bárbara do Nascimento Borges ◽  
...  

Background: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. Objective: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. Methods: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). Results: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. Conclusions: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


Sign in / Sign up

Export Citation Format

Share Document