scholarly journals Chitooligosaccharide as A Possible Replacement for Sulfur Dioxide in Winemaking

2020 ◽  
Vol 10 (2) ◽  
pp. 578 ◽  
Author(s):  
Zhenming Hao ◽  
Yanrong Zhang ◽  
Zhen Sun ◽  
Xianzhen Li

Sulfur dioxide (SO2) has been used for centuries as a preservative in winemaking. However, the addition of SO2 is associated with allergic reactions and can negatively affect wine quality. In our work, chitooligosaccharide (COS) was applied as an alternative to SO2 in winemaking, and its antimicrobial activity during winemaking was investigated in comparison with the action of SO2. The optimal concentration of COS was identified as 500 mg/L. The antimicrobial effect of COS was evaluated using known and our own separated wine spoilage organisms. The antimicrobial effect of 500 mg/L COS was found to be comparable with that of 100 mg/L SO2. Furthermore, using 500 mg/L COS as an additive during winemaking did notinfluence the cell growth of Saccharomyces cerevisiae. Therefore, COS can be used as an additive in winemaking.

2020 ◽  
Vol 8 (7) ◽  
pp. 1038 ◽  
Author(s):  
Javier Vicente ◽  
Javier Ruiz ◽  
Ignacio Belda ◽  
Iván Benito-Vázquez ◽  
Domingo Marquina ◽  
...  

Over the last decade, several non-Saccharomyces species have been used as an alternative yeast for producing wines with sensorial properties that are distinctive in comparison to those produced using only Saccharomyces cerevisiae as the classical inoculum. Among the non-Saccharomyces wine yeasts, Metschnikowia is one of the most investigated genera due to its widespread occurrence and its impact in winemaking, and it has been found in grapevine phyllospheres, fruit flies, grapes, and wine fermentations as being part of the resident microbiota of wineries and wine-making equipment. The versatility that allows some Metschnikowia species to be used for winemaking relies on an ability to grow in combination with other yeast species, such as S. cerevisiae, during the first stages of wine fermentation, thereby modulating the synthesis of secondary metabolites during fermentation in order to improve the sensory profile of the wine. Metschnikowia exerts a moderate fermentation power, some interesting enzymatic activities involving aromatic and color precursors, and potential antimicrobial activity against spoilage yeasts and fungi, resulting in this yeast being considered an interesting tool for use in the improvement of wine quality. The abovementioned properties have mostly been determined from studies on Metschnikowia pulcherrima wine strains. However, M. fructicola and M. viticola have also recently been studied for winemaking purposes.


2011 ◽  
Vol 5 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Dusan Zvekic ◽  
Vladimir Srdic ◽  
Maja Karaman ◽  
Milan Matavulj

The antimicrobial effect of the ZnO nanoparticles dispersed in polyurethane varnishes was investigated. Antimicrobial activity was evaluated against three bacteria (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) and one strain fungi (Sacharomyces cerevisiae) by the 'pour-plate' test. It was shown that the ZnO nanoparticles efficiently inhibit growth of the colonies of Staphylococcus aureus, Pseudomonas aeruginosa and Saccharomyces cerevisiae, but their activity against Escherichia coli was found to be questionable suggesting more detailed research.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 368
Author(s):  
Joy Igbafe ◽  
Agnes Kilonzo-Nthenge ◽  
Samuel N. Nahashon ◽  
Abdullah Ibn Mafiz ◽  
Maureen Nzomo

The probiotic potential and antimicrobial activity of Lactiplantibacillus plantarum, Saccharomyces cerevisiae, and Bifidobacterium longum were investigated against Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes. Selected strains were subjected to different acid levels (pH 2.5–6.0) and bile concentrations (1.0–3.0%). Strains were also evaluated for their antimicrobial activity by agar spot test. The potential probiotic strains tolerated pH 3.5 and above without statistically significant growth reduction. However, at pH 2.5, a significant (p < 0.05) growth reduction occurred after 1 h for L. plantarum (4.32 log CFU/mL) and B. longum (5.71 log CFU/mL). S. cerevisiae maintained steady cell counts for the entire treatment period without a statistically significant (p > 0.05) reduction (0.39 log CFU/mL). The results indicate at 3% bile concertation, 1.86 log CFU/mL reduction was observed for L. plantarum, while S. cerevisiae, and B. longum growth increased by 0.06 and 0.37 log CFU/mL, respectively. L. plantarum and B. longum demonstrated antimicrobial activity against E. coli O157:H7, S. typhimurium and L. monocytogenes. However, S. cerevisiae did not display any inhibition to any of the pathogens. The results indicate that L. plantarum and B. longum present probiotic potential for controlling E. coli O157:H7, S. and L. monocytogenes in poultry.


2021 ◽  
Vol 9 (12) ◽  
pp. 2528
Author(s):  
Patrícia Branco ◽  
Rute Coutinho ◽  
Manuel Malfeito-Ferreira ◽  
Catarina Prista ◽  
Helena Albergaria

The yeast Brettanomyces bruxellensis is one of the most dangerous wine contaminants due to the production of phenolic off-flavors such as 4-ethylphenol. This microbial hazard is regularly tackled by addition of sulfur dioxide (SO2). Nevertheless, B. bruxellensis is frequently found at low levels (ca 103 cells/mL) in finished wines. Besides, consumers health concerns regarding the use of sulfur dioxide encouraged the search for alternative biocontrol measures. Recently, we found that Saccharomyces cerevisiae secretes a natural biocide (saccharomycin) that inhibits the growth of different B. bruxellensis strains during alcoholic fermentation. Here we investigated the ability of S. cerevisiae CCMI 885 to prevent B. bruxellensis ISA 2211 growth and 4-ethylphenol production in synthetic and true grape must fermentations. Results showed that B. bruxellensis growth and 4-ethylphenol production was significantly inhibited in both media, although the effect was more pronounced in synthetic grape must. The natural biocide was added to a simulated wine inoculated with 5 × 102 cells/mL of B. bruxellensis, which led to loss of culturability and viability (100% dead cells at day-12). The conjugated effect of saccharomycin with SO2 was evaluated in simulated wines at 10, 12, 13 and 14% (v/v) ethanol. Results showed that B. bruxellensis proliferation in wines at 13 and 14% (v/v) ethanol was completely prevented by addition of 1.0 mg/mL of saccharomycin with 25 mg/L of SO2, thus allowing to significantly reduce the SO2 levels commonly used in wines (150–200 mg/L).


Author(s):  
Alev ONDER ◽  
Suna Sibel GURPINAR, Mujde ERYILMAZ ◽  
Bayram Kagan AKAY, Ahsen Sevde CINAR

Spices are a part of the plants used for many purposes as preservatives and as colorants in foods or as medicinal intention. Main aim of the present research was to estimate the potential antimicrobial activity of some spices from Apiaceae family such as Amni visnaga (Diş otu, Hıltan), Anethum graveolens (Dereotu), Apium graveolens (Kereviz), Coriandrum sativum (Kişniş), Cuminum cyminum (Kimyon), Daucus carota (Havuç), Foeniculum vulgare (Rezene), Petroselinum sativum (Maydanoz), Pimpinella anisum (Anason). Thus, the fruits of the plants are used in the experiments. The fruits have been extracted by n-hexane, and all extracts have been subjected to TLC (Thin Layer Chromatography). The n-hexane extracts were screened for their potential in vitro antibacterial activity against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa ATCC 27853 and antifungal activity against Candida albicans ATCC 10231 by microbroth dilution method. The hexane extracts of the fruits of Coriandrum sativum, Anethum graveolens, Daucus carota, and Pimpinella anisum did not show antimicrobial activity against tested microorganisms. Except these, the other extracts having MIC values of 2.5-5-10 mg/mL exhibited antimicrobial effect against some tested microorganisms. These results demonstrate that the extracts which have an antimicrobial effect can probably play a role as an antimicrobial agent owing to their nonpolar components which are accumulated to the n-hexane extracts.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


2021 ◽  
Vol 11 (3) ◽  
pp. 1180
Author(s):  
Kinga Paruch ◽  
Łukasz Popiołek ◽  
Anna Biernasiuk ◽  
Anna Berecka-Rycerz ◽  
Anna Malm ◽  
...  

Bacterial infections, especially those caused by strains resistant to commonly used antibiotics and chemotherapeutics, are still a current threat to public health. Therefore, the search for new molecules with potential antimicrobial activity is an important research goal. In this article, we present the synthesis and evaluation of the in vitro antimicrobial activity of a series of 15 new derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid. The potential antimicrobial effect of the new compounds was observed mainly against Gram-positive bacteria. Compound 15, with the 5-nitro-2-furoyl moiety, showed the highest bioactivity: minimum inhibitory concentration (MIC) = 1.95–15.62 µg/mL and minimum bactericidal concentration (MBC)/MIC = 1–4 µg/mL.


Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Ya-Wen Chang ◽  
Susie C Howard ◽  
Yelena V Budovskaya ◽  
Jasper Rine ◽  
Paul K Herman

Abstract Saccharomyces cerevisiae cells enter into a distinct resting state, known as stationary phase, in response to specific types of nutrient deprivation. We have identified a collection of mutants that exhibited a defective transcriptional response to nutrient limitation and failed to enter into a normal stationary phase. These rye mutants were isolated on the basis of defects in the regulation of YGP1 expression. In wild-type cells, YGP1 levels increased during the growth arrest caused by nutrient deprivation or inactivation of the Ras signaling pathway. In contrast, the levels of YGP1 and related genes were significantly elevated in the rye mutants during log phase growth. The rye defects were not specific to this YGP1 response as these mutants also exhibited multiple defects in stationary phase properties, including an inability to survive periods of prolonged starvation. These data indicated that the RYE genes might encode important regulators of yeast cell growth. Interestingly, three of the RYE genes encoded the Ssn/Srb proteins, Srb9p, Srb10p, and Srb11p, which are associated with the RNA polymerase II holoenzyme. Thus, the RNA polymerase II holoenzyme may be a target of the signaling pathways responsible for coordinating yeast cell growth with nutrient availability.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1059-1070
Author(s):  
Susie C Howard ◽  
Arelis Hester ◽  
Paul K Herman

Abstract The Ras signaling pathway in Saccharomyces cerevisiae controls cell growth via the cAMP-dependent protein kinase, PKA. Recent work has indicated that these effects on growth are due, in part, to the regulation of activities associated with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. However, the precise target of these Ras effects has remained unknown. This study suggests that Ras/PKA activity regulates the elongation step of the RNA polymerase II transcription process. Several lines of evidence indicate that Spt5p in the Spt4p/Spt5p elongation factor is the likely target of this control. First, the growth of spt4 and spt5 mutants was found to be very sensitive to changes in Ras/PKA signaling activity. Second, mutants with elevated levels of Ras activity shared a number of specific phenotypes with spt5 mutants and vice versa. Finally, Spt5p was efficiently phosphorylated by PKA in vitro. Altogether, the data suggest that the Ras/PKA pathway might be directly targeting a component of the elongating polymerase complex and that this regulation is important for the normal control of yeast cell growth. These data point out the interesting possibility that signal transduction pathways might directly influence the elongation step of RNA polymerase II transcription.


Sign in / Sign up

Export Citation Format

Share Document