scholarly journals The Influence of Polystyrene Microspheres Abundance on Development and Feeding Behavior of Artemia salina (Linnaeus, 1758)

2021 ◽  
Vol 11 (8) ◽  
pp. 3352
Author(s):  
Marco Albano ◽  
Giuseppe Panarello ◽  
Davide Di Paola ◽  
Fabiano Capparucci ◽  
Rosalia Crupi ◽  
...  

In the present study, it has been evaluated how 10 µm of polyethylene microspheres can be ingested by Artemia salina (Linnaeus, 1758) larvae within the first 7 days of the life cycle, and the impact on their health. Twelve A. salina larvae (instar I) groups were exposed to different microplastics (MPs) concentrations (0-1-10-102-103-104 MPs/mL), with and without Dunaliella salina as a food source. The results highlighted that A. salina larvae ingest MPs in relation to the exposure times in a dose-dependent manner and are significantly influenced by food availability. The highest contamination found was 306.2 MPs/individual at 104 MPs/mL exposure without a food source. No MPs were found in the presence of the food source from 1 to 102 MPs/mL, while contamination was detected at all concentrations of MPs without a food source. The worst effect on the developmental stages was evaluated at 168 h with a food source, with a delay compared to the control of I and II instars at 103 and 104 MPs/mL, respectively. Furthermore, microalgal feeding was significantly reduced for about 50% in the presence of 104 MPs/mL. These results highlight that aquatic microplastics pollution could affect the A. salina’s feeding behavior and life cycle.

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1156
Author(s):  
Madelaine Sugasti-Salazar ◽  
Yessica Y. Llamas-González ◽  
Dalkiria Campos ◽  
José González-Santamaría

Mayaro virus (MAYV) hijacks the host’s cell machinery to effectively replicate. The mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK1/2 have emerged as crucial cellular factors implicated in different stages of the viral cycle. However, whether MAYV uses these MAPKs to competently replicate has not yet been determined. The aim of this study was to evaluate the impact of MAPK inhibition on MAYV replication using primary human dermal fibroblasts (HDFs) and HeLa cells. Viral yields in supernatants from MAYV-infected cells treated or untreated with inhibitors SB203580, SP600125, U0126, or Losmapimod were quantified using plaque assay. Additionally, viral protein expression was analyzed using immunoblot and immunofluorescence. Knockdown of p38⍺/p38β isoforms was performed in HDFs using the PROTACs molecule NR-7h. Our data demonstrated that HDFs are highly susceptible to MAYV infection. SB203580, a p38 inhibitor, reduced MAYV replication in a dose-dependent manner in both HDFs and HeLa cells. Additionally, SB203580 significantly decreased viral E1 protein expression. Similarly, knockdown or inhibition of p38⍺/p38β isoforms with NR-7h or Losmapimod, respectively, affected MAYV replication in a dose-dependent manner. Collectively, these findings suggest that p38 could play an important role in MAYV replication and could serve as a therapeutic target to control MAYV infection.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3569
Author(s):  
Yicheng Tan ◽  
Zhang Ye ◽  
Mansheng Wang ◽  
Muhammad Faisal Manzoor ◽  
Rana Muhammad Aadil ◽  
...  

In this study, the impact of different cell disruption techniques (high-pressure micro fluidization (HPMF), ionic liquids (ILs), multi-enzyme (ME), and hydrochloric acid (HCl)) on the chemical composition and biological activity of astaxanthin (AST) obtained from Haematococcus pluvialis was investigated. Results indicated that all cell disruption techniques had a significant effect on AST composition, which were confirmed by TLC and UPC2 analysis. AST recovery from HCl (HCl-AST) and ILs (ILs-AST) cell disruption techniques was dominant by free and monoesters AST, while AST recovery from HPMF (HPMF-AST) and ME (ME-AST) cell disruption techniques was composed of monoesters, diesters, and free AST. Further biological activity analysis displayed that HCl-AST showed the highest ABTS and DPPH activity, while ILs-AST showed better results against the ORAC assay. Additionally, ILs-AST exhibits a stronger anti-proliferation of HepG2 cells in a dose-dependent manner, which was ascribed to AST-induced ROS in to inhibit the proliferative of cancer cells.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 767
Author(s):  
Assmaa Anter ◽  
Mohamed Abd El-Ghany ◽  
Marwa Abou El Dahab ◽  
Noha Mahana

There is strong correlation between changes in abundance of specific bacterial species and several diseases including schistosomiasis. Several studies have described therapeutic effects of curcumin (CUR) which may arise from its regulative effects on intestinal microbiota. Thus, we examined the impact of CUR on the diversity of intestinal microbiota with/without infection by Schistosoma mansoni cercariae for 56 days. Enterobacteriaceae was dominating in a naive and S. mansoni infected mice group without CUR treatment, the most predominant species was Escherichia coli with relative density (R.D%) = 80.66% and the least one was Pseudomonas sp. (0.52%). The influence of CUR on murine microbiota composition was examined one week after oral administration of high (40) and low (20 mg/kg b.w.) CUR doses were administered three times, with two day intervals. CUR induced high variation in the Enterobacteriaceae family, characterized by a significant (p < 0.001) reduction in E. coli and asignificant (p < 0.001) increase in Pseudomonas sp. in both naïve and S. mansoni-infected mice, compared to untreated mice, in a dose-dependent manner. Additionally, our study showed the effects of high CUR doses on S. mansoni infection immunological and parasitological parameters. These data support CUR’s ability to promote Pseudomonas sp. known to produce schistosomicidal toxins and offset the sequelae of murine schistosomiasis.


2007 ◽  
Vol 85 (3) ◽  
pp. 326-336 ◽  
Author(s):  
Ting Lu ◽  
Yamini Achari ◽  
Jerome B. Rattner ◽  
David A. Hart

Degradation of articular cartilage is characteristic of osteoarthritis, and matrix metalloproteinase-13 (MMP-13) has been implicated in this condition. Estrogen receptors (ERs) are present in connective tissues, indicating these tissues' potential responsiveness to estrogen. We based this study on the hypothesis that estrogen receptor β (ERβ) can modulate MMP-13 promoter activity. Transfection of cells with ERβ constructs led to the induction of the endogenous MMP-13 gene, as evidenced by increased mRNA levels. The results also indicated that MMP-13 promoter construct activity in the HIG-82 cell line significantly increased when ERβ was present, and that estrogen downregulated this response in a dose-dependent manner. ERβ was shown to enhance MMP-13 expression somewhat more strongly than ERα, and the impact of a number of selective ER modulators (tamoxifen, raloxifene, and ICI 182,780) on ERβ enhancement of promoter activity was found to be significantly less than that of estrogen. Furthermore, transcription regulatory sites in the MMP-13 promoter, specifically AP-1 and PEA-3, were shown to act in conjunction to mediate ERβ effects. Thus, ERβ likely influences MMP-13 promoter expression in normal and disease processes.


2021 ◽  
Vol 42 (3) ◽  
pp. 615-624
Author(s):  
E.H. Eldrehmy ◽  
◽  
S.M. Abdel-Hafez ◽  
Y.S. Alghamdi ◽  
M.M. Soliman ◽  
...  

Aim: This study was designed to assess the antibiofilm activity of quercetin on characterized S. aureus isolates. Methodology: This study evaluated 36 S. aureus isolates, each of which was identified using Gram staining, culture, biochemical, and PCR assays. Isolates were cultured and their biofilm production was evaluated using Congo red agar (CRA) plates, microtiter plate tests and PCR, and the effects of quercetin were examined. Results: The CRA results revealed that eight (22.3%) S. aureus isolates were strongly positive for biofilm production and an additional 18 isolates (50%) showed moderate biofilm capacity. The remaining 10 isolates were negative (27.7%) for biofilm production. S. aureus isolates were divided into strong positive, intermediate, and negative groups, 27.8%, 44.5%, and 27.7%, respectively. Scanning electron microscopy showed that the biofilm-producing isolates appeared as aggregates of cells within a heavy matrix. In addition, PCR assay identified IcaA and IcaD (66.6% for both) biofilm production genes in most isolates and IcaC (61.1%), IcaB, FnbB (33.3% for both), and Fib (22.2%) in several other strains. Quercetin significantly inhibited biofilm activity in biofilm producing S. aureus isolates in a dose-dependent manner, with an inhibition rate of 29.6-87.7%. Interpretation: Biofilm production is dependent on Ica gene phenotype and strains with an IcaABCD or IcaABD phenotype produce more biofilm than strains with IcaAD phenotype. Quercetin significantly inhibited S. aureus biofilm production, irrespective of Ica phenotype.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna-Klara Amler ◽  
Domenic Schlauch ◽  
Selin Tüzüner ◽  
Alexander Thomas ◽  
Norbert Neckel ◽  
...  

AbstractRadiotherapy of head and neck squamous cell carcinoma can lead to long-term complications like osteoradionecrosis, resulting in severe impairment of the jawbone. Current standard procedures require a 6-month wait after irradiation before dental reconstruction can begin. A comprehensive characterization of the irradiation-induced molecular and functional changes in bone cells could allow the development of novel strategies for an earlier successful dental reconstruction in patients treated by radiotherapy. The impact of ionizing radiation on the bone-forming alveolar osteoblasts remains however elusive, as previous studies have relied on animal-based models and fetal or animal-derived cell lines. This study presents the first in vitro data obtained from primary human alveolar osteoblasts. Primary human alveolar osteoblasts were isolated from healthy donors and expanded. After X-ray irradiation with 2, 6 and 10 Gy, cells were cultivated under osteogenic conditions and analyzed regarding their proliferation, mineralization, and expression of marker genes and proteins. Proliferation of osteoblasts decreased in a dose-dependent manner. While cells recovered from irradiation with 2 Gy, application of 6 and 10 Gy doses not only led to a permanent impairment of proliferation, but also resulted in altered cell morphology and a disturbed structure of the extracellular matrix as demonstrated by immunostaining of collagen I and fibronectin. Following irradiation with any of the examined doses, a decrease of marker gene expression levels was observed for most of the investigated genes, revealing interindividual differences. Primary human alveolar osteoblasts presented a considerably changed phenotype after irradiation, depending on the dose administered. Mechanisms for these findings need to be further investigated. This could facilitate improved patient care by re-evaluating current standard procedures and investigating faster and safer reconstruction concepts, thus improving quality of life and social integrity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yunhang Li ◽  
Yuanfa Tao ◽  
Jingyu Xu ◽  
Yihuai He ◽  
Wen Zhang ◽  
...  

Background: Oxygen therapy usually exposes patients to hyperoxia, which induces injuries in the lung, the heart, and the brain. The gut and its microbiome play key roles in critical illnesses, but the impact of hyperoxia on the gut and its microbiome remains not very clear. We clarified the time- and dose-dependent effects of hyperoxia on the gut and investigated oxygen-induced gut dysbiosis and explored the underlying mechanism of gut injury by transcriptome analysis.Methods: The C57BL/6 mice were randomly divided into the control group and nine different oxygen groups exposed to hyperoxia with an inspired O2 fraction (FiO2) of 40, 60, and 80% for 24, 72, and 168 h (7 days), respectively. Intestinal histopathological and biochemical analyses were performed to explore the oxygen-induced gut injury and inflammatory response. Another experiment was performed to explore the impact of hyperoxia on the gut microbiome by exposing the mice to hyperoxia (FiO2 80%) for 7 days, with the 16S rRNA sequencing method. We prolonged the exposure (up to 14 days) of the mice to hyperoxia (FiO2 80%), and gut transcriptome analysis and western blotting were carried out to obtain differentially expressed genes (DEGs) and signaling pathways related to innate immunity and cell death.Results: Inhaled oxygen induced time- and dose-dependent gut histopathological impairment characterized by mucosal atrophy (e.g., villus shortening: 80% of FiO2 for 24 h: P = 0.008) and enterocyte death (e.g., apoptosis: 40% of FiO2 for 7 days: P = 0.01). Administered time- and dose-dependent oxygen led to intestinal barrier dysfunction (e.g., endotoxemia: 80% of FiO2 for 72 h: P = 0.002) and potentiated gut inflammation by increasing proinflammatory cytokines [e.g., tumor necrosis factor alpha (TNF-α): 40% of FiO2 for 24 h: P = 0.003)] and reducing anti-inflammatory cytokines [Interleukin 10 (IL-10): 80% of FiO2 for 72 h: P &lt; 0.0001]. Hyperoxia induced gut dysbiosis with an expansion of oxygen-tolerant bacteria (e.g., Enterobacteriaceae). Gut transcriptome analysis identified 1,747 DEGs and 171 signaling pathways and immunoblotting verified TLR-4, NOD-like receptor, and apoptosis signaling pathways were activated in oxygen-induced gut injury.Conclusions: Acute hyperoxia rapidly provokes gut injury in a time- and dose-dependent manner and induces gut dysbiosis, and an innate immune response is involved in an oxygen-induced gut injury.


Development ◽  
1990 ◽  
Vol 109 (2) ◽  
pp. 387-393 ◽  
Author(s):  
E. Mitrani ◽  
Y. Gruenbaum ◽  
H. Shohat ◽  
T. Ziv

A chick genomic clone that reveals a high degree of homology to the mammalian and Xenopus bFGF gene has been isolated. The pattern of expression of bFGF has been examined during early chick embryogenesis. RNA blot analysis revealed that chick bFGF is already transcribed at pregastrula stages. Immunolabeling analysis indicated that bFGF protein is present at these early developmental stages and is distributed evenly in the epiblast, hypoblast and marginal zone of the chick blastula. Substances that can inhibit FGF action were applied to early chick blastoderms grown in vitro under defined culture conditions (DCM). Both heparin and suramin were capable of blocking the formation of mesodermal structures in a dose-dependent manner. Our results indicate that FGF-like substances may need to be present for axial structures to develop although they may be acting earlier during the induction of non-axial mesoderm.


1975 ◽  
Vol 229 (5) ◽  
pp. 1438-1447 ◽  
Author(s):  
RR Miselis ◽  
AN Epstein

Feeding was induced with lateral intracerebroventricular (ICV) injections of 2-deoxy-D-glucose (2-dg), a glucose analogue causing glucoprivation. Feeding increased rapidly by an average of 2.6 g following ICV 2-DG (2.9 or 5.8 mg per rat), but did not increase after ICV D-glucose or sucrose. At the same doses, 2-DG did not increase feeding when given peripherally. Core temperature dropped in a dose-dependent manner with doses of 2-DG sufficient to induce feeding after peripheral administration, but did not occur with ICV injections. The 2-DG (0.006--1.219 M) did not stimulate feeding when infused bilaterally into the lateral hypothalamus, the preoptic area, or the anterior lateral hypothalamus. Nor did it produce feeding when injected into the ventromedial hypothalamus at the same sites and in the same rats in which procaine HC1 caused increased feeding. The brain, therefore, is directly sensitive to glucoprivation in the control of feeding, and glucoprivation alone is sufficient to mobilize feeding behavior. The specific site of sensitivity to glucoprivation and the mode of action of the glucoprivic system in the brain are unknown.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1585
Author(s):  
Ray Bacala ◽  
Bin Xiao Fu ◽  
Katherine Cordova ◽  
Dave W. Hatcher

Fusarium infection is a worldwide agricultural problem of billion dollar proportions globally, and it has increasingly threatened entire regional food supplies. In addition to the toxin deoxynivalenol (DON), Fusarium species express digestive enzymes that degrade starch and protein, affecting the quality of infected grains, especially wheat processing performance which depends largely on gluten proteins. In this study, the impact of Fusarium protease on the functionality of Canada Western Red Spring (CWRS) wheat was assessed by adding Fusarium-damaged kernels (FDK) to a FDK-free base wheat sample. Digestion of beta-casein by extracts of flours, milled from sound and FDK-spiked wheat samples, demonstrated elevated cleavage in FDK-spiked flour extracts as follows: N-terminal to lysine (eight-fold), N- and C-terminal to isoleucine (four-fold and three-fold, respectively), N-terminal to tyrosine (three-fold) and C-terminal to arginine at P1′ (five-fold). Comparison of abbreviated (45 min) and standard (135 min) extensigraph test results indicated that desirable increases in dough resistance to extension (Rmax) due to gluten re-polymerization after longer resting were partially to completely counteracted in FDK-spiked flours in a dose-dependent manner. Baking tests confirmed that while loaf volume is similar, proofed dough from FDK-spiked samples caused detectable loaf collapse at 3% FDK. Extensigraph Rmax and Fusarium protease levels were inversely related, and effected by both the extent and severity of infection. While the current FDK tolerances for grading Canadian wheat can effectively control protease damage, prevalence of deoxynivalenol (DON) weak- and non-producing Fusarium strains/species (e.g., F. avenaceum) in some growing regions must be considered to protect functionality if grading is solely based on DON content.


Sign in / Sign up

Export Citation Format

Share Document