scholarly journals Improving the Structural Characteristics of Heavy Concrete by Combined Disperse Reinforcement

2021 ◽  
Vol 11 (13) ◽  
pp. 6031
Author(s):  
Levon R. Mailyan ◽  
Alexey N. Beskopylny ◽  
Besarion Meskhi ◽  
Aleksandr V. Shilov ◽  
Sergey A. Stel’makh ◽  
...  

The development of perspective concrete mixes capable of resisting the action of external loads is an important scientific problem in the modern construction industry. This article presents a study of the influence of steel, basalt, and polypropylene fiber materials on concrete’s strength and deformation characteristics. A combination of various types of dispersed reinforcement is considered, and by methods of mathematical planning of the experiment, regression dependences of the strength and deformation characteristics on the combination of fibers and their volume fraction are obtained. It was shown that the increase in compressive strength was 35% in fiber-reinforced concretes made using a combination of steel and basalt fiber with a volume concentration of steel fiber of 2% and basalt fiber of 2%; tensile strength in bending increased by 79%, ultimate deformations during axial compression decreased by 52%, ultimate deformation under axial tension decreased by 39%, and elastic modulus increased by 33%. Similar results were obtained for other combinations of dispersed reinforcement. The studies carried out made it possible to determine the most effective combinations of fibers of various types of fibers with each other and their optimal volume concentration.

Author(s):  
Xiaowei Cheng ◽  
Haoyou Zhang

AbstractUnder strong earthquakes, reinforced concrete (RC) walls in high-rise buildings, particularly in wall piers that form part of a coupled or core wall system, may experience coupled axial tension–flexure loading. In this study, a detailed finite element model was developed in VecTor2 to provide an effective tool for the further investigation of the seismic behaviour of RC walls subjected to axial tension and cyclic lateral loading. The model was verified using experimental data from recent RC wall tests under axial tension and cyclic lateral loading, and results showed that the model can accurately capture the overall response of RC walls. Additional analyses were conducted using the developed model to investigate the effect of key design parameters on the peak strength, ultimate deformation capacity and plastic hinge length of RC walls under axial tension and cyclic lateral loading. On the basis of the analysis results, useful information were provided when designing or assessing the seismic behaviour of RC slender walls under coupled axial tension–flexure loading.


2018 ◽  
Vol 32 (18) ◽  
pp. 1840011 ◽  
Author(s):  
Wenxiang Xu ◽  
Hongguang Sun ◽  
Wen Chen ◽  
Huisu Chen

Granular materials as typical soft matter, their transport properties play significant roles in durability and service life in relevant practical engineering structures. Physico-mechanical properties of materials are generally dependent of their microstructures including interfacial and porous characteristics. The formation of such microstructures is directly related to particle components in granular materials. Understanding the interactive mechanism of particle components, microstructures, and transport properties is a problem of great interest in materials research community. The resulting rigorous component-structure-property relations are also valuable for material design and microstructure optimization. This review article describes state-of-the-art progresses on modeling particle components, interfacial and porous configurations and incorporating these internal structural characteristics into modeling transport properties of granular materials. We mainly focus on three issues involving the simulation for geometrical components, the quantitative characterization for interfacial and porous microstructures, and the modeling strategies for diffusive behaviors of granular materials. In the first aspect, in-depth reviews are presented to realize complex morphologies of geometrical particles, to detect the overlap between adjacent nonspherical particles, and to simulate the random packings of nonspherical particles. In the second aspect, we emphasize the development progresses on the interfacial thickness and porosity distribution, the interfacial volume fraction, and the continuum percolation of soft particles representing compliant interfaces and discrete pores. In the final aspect, a literature review is also provided on modeling of transport properties on the forefront of the effective diffusion and anomalous diffusion in multiphase granular materials. Finally, some conclusions and perspectives for future studies are provided.


2010 ◽  
Vol 150-151 ◽  
pp. 1063-1067
Author(s):  
Fei Fei Zhu ◽  
Zhi Li Zhong ◽  
Zong Fu Guo

The three composite boards which were made of continuous basalt fiber (CBF) and polypropylene fiber (PP) in different fiber ratios were researched on this paper. The manufacturing forming process included blending, carding, web formation, laminating and compression molding orderly. The tension and bending properties were investigated experimentally, and then dual variance analysis was used to show the significant difference of the mechanical property in the transverse and longitudinal orientation as well the appreciable impact of different fiber ratios to the mechanical property. The results show that the difference of the tension and blending strength in the same direction, among composite boards in different fiber proportions, is about 1~10Mpa; the difference in the same fiber proportion, between transverse and longitudinal, vary within a wide range from 10Mpa to 30Mpa. The results of variance analysis have also proved the conclusion, the difference between transverse and longitudinal is more significant than the difference among different fiber proportions. In the similar study, the significance hadn’t been seen sufficiently, so this paper provides reference to the actual application of the composite board.


2021 ◽  
Vol 1046 ◽  
pp. 1-7
Author(s):  
Manjunath V. Bhogone ◽  
Kolluru V.L. Subramaniam

The fracture response of macro polypropylene fiber reinforced concrete (PPFRC) and hybrid blend of macro and micro polypropylene fiber reinforced concrete (HyFRC) are evaluated at 1, 3, 7 and 28 days. There is an improvement in the early-age fracture response of HyFRC compared to PPFRC. The changing cohesive stress-crack separation relationship produced by ageing of the concrete matrix is determined from the fracture test responses. An improved early-age cohesive stress response is obtained from the hybrid blend containing micro and macro fibers. The hybrid fiber blend also has a higher tensile strength at early age when compared to an identical volume fraction of macro polypropylene fibers.


2021 ◽  
Author(s):  
Amanmammet Bugrayev ◽  
Svetlana Nafikova ◽  
Salim Taoutaou ◽  
Guvanch Gurbanov ◽  
Maksatmyrat Hanov ◽  
...  

Abstract Lost circulation in depleted sands during a primary cementing job is a serious problem in Turkmenistan. The uncertainty in formation pressure across these sands increases the risk of losses during drilling and cementing, which results in remedial operations and nonproductive time. The need to find a fit-for-purpose lost circulation solution becomes even more critical in an environment with narrow pore pressure-to-fracture gradient, where each cement job with losses compromises the downhole well integrity. An engineered lost circulation solution using innovative materials in the cement slurry was carefully assessed and qualified in the laboratory for each case to optimize the formulation. The lost circulation control treatment combines specialized engineered fibers with sized bridging materials to increase the effectiveness of treatment, formulated and added to the cement slurries based on the slurry solids volume fraction (SVF). Cement slurries with low SVF were treated with higher concentrations of the product and slurries with high SVF used lower concentrations. More than 50 jobs were performed with cement slurries designed at various densities and SVF up to 58% and using this advanced lost circulation material (LCM) to mitigate losses during cementing. Field experience showed positive results, where the differential pressure up to 2,800 psi was expected during cementing operation. A local database, generated based on the design and development work performed, enabled improved decision-making for selection and LCM application requirements for subsequent jobs and development of a lost circulation strategy. The mitigation plan was put in place against losses in critical sections and depleted sand formations in Turkmenistan. It assisted in meeting the cement coverage requirements on numerous occasions, improving overall the integrity of the wells and thus, was considered to be a success. This paper provides insight of this advanced LCM, its application in cement slurries, the logic behind the developed loss circulation strategy, and the high success rate of its implementation. Three case histories are presented to demonstrate the strategy and results.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
B. Ravi Kumar ◽  
Vishal Singh ◽  
Tarun Nanda ◽  
Manashi Adhikary ◽  
Nimai Halder ◽  
...  

The authors simulated the industrially used continuous annealing conditions to process dual phase (DP) steels by using a custom designed annealing simulator. Sixty-seven percentage of cold rolled steel sheets was subjected to different processing routes, including the conventional continuous annealing line (CAL), intercritical annealing (ICA), and thermal cycling (TC), to investigate the effect of change in volume fraction, shape, and spatial distribution of martensite on tensile deformation characteristics of DP steels. Annealing parameters were derived using commercial software, including thermo-calc, jmat-pro, and dictra. Through selection of appropriate process parameters, the authors found out possibilities of significantly altering the volume fraction, morphology, and grain size distribution of martensite phase. These constituent variations showed a strong influence on tensile properties of DP steels. It was observed that TC route modified the martensite morphology from the typical lath type to in-grain globular/oblong type and significantly reduced the martensite grain size. This route improved the strength–ductility combination from 590 MPa–33% (obtained through CAL route) to 660 MPa–30%. Finally, the underlying mechanisms of crack initiation/void formation, etc., in different DP microstructures were discussed.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1418 ◽  
Author(s):  
Maria Navarro-Mas ◽  
Juan García-Manrique ◽  
Maria Meseguer ◽  
Isabel Ordeig ◽  
Ana Sánchez

Although there are many machining studies of carbon and glass fiber reinforced plastics, delamination and tool wear of basalt fiber reinforced plastics (BFRP) in edge trimming has not yet studied. This paper presents an end milling study of BFRP fabricated by resin transfer molding (RTM), to evaluate delamination types at the top layer of the machined edge with different cutting conditions (cutting speed, feed rate and depth of cut) and fiber volume fraction (40% and 60%). This work quantifies delamination types, using a parameter Sd/L, that evaluates the delamination area (Sd) and the length (L), taking into account tool position in the yarn and movement of yarns during RTM process, which show the random nature of delamination. Delamination was present in all materials with 60% of fiber volume. High values of tool wear did not permit to machine the material due to an excessive delamination. Type II delamination was the most usual delamination type and depth of cut has influence on this type of delamination.


1990 ◽  
Vol 259 (4) ◽  
pp. H1086-H1096 ◽  
Author(s):  
J. M. Capasso ◽  
T. Palackal ◽  
G. Olivetti ◽  
P. Anversa

To determine if aging engenders alterations in the functional properties of the myocardium and ventricular remodeling, the hemodynamic performance and structural characteristics of the left ventricle of male Fischer 344 rats at 4, 12, 20, and 29 mo of age were studied by quantitative physiology and morphology. In vivo assessment of cardiac pump function showed no change up to 20 mo, whereas left ventricular end-diastolic pressure was increased at 29 mo. Moreover, peak rates of pressure rise and decay, stroke volume, ejection fraction, and cardiac output were depressed at the later age interval, demonstrating the presence of ventricular failure at this time. The measurements of chamber size and wall thickness showed that ventricular end-diastolic and end-systolic volumes progressively increased with age with the greatest change occurring at 20-29 mo. Aging was also accompanied by a marked augmentation in the volume fraction of fibrotic areas in the ventricular myocardium that was due to an increase in their number and cross-sectional area with time. These architectural rearrangements, in combination with the abnormalities in ventricular function, resulted in an elevation in the volume of wall stress throughout the cardiac cycle. Wall stress increased by 64, 44, and 50% from 4 to 12, 12 to 20, and 20 to 29 mo of age. In conclusion, aging leads to a continuous rise in wall stress that is not normalized by ventricular remodeling. These two independent processes appear to be responsible for the onset of heart failure in the senescent rat.


Sign in / Sign up

Export Citation Format

Share Document