scholarly journals Research on the Growth Mechanism of PM2.5 in Central and Eastern China during Autumn and Winter from 2013–2020

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 134
Author(s):  
Qi Jiang ◽  
Hengde Zhang ◽  
Fei Wang ◽  
Fei Wang

Haze is a majorly disastrous type of weather in China, especially central and eastern of China. The development of haze is mainly caused by highly concentrated fine particles (PM2.5) on a regional scale. Here, we present the results from an autumn and winter study conducted from 2013 to 2020 in seven highly polluted areas (27 representative stations) in central and eastern China to analyze the growth mechanism of PM2.5. At the same time, taking Beijing Station as an example, the characteristics of aerosol composition and particle size in the growth phase are analyzed. Taking into account the regional and inter-annual differences of fine particles (PM2.5) distribution, the local average PM2.5 growth value of the year is used as the boundary value for dividing slow, rapid, and explosive growth (only focuses on the hourly growth rate greater than 0). The average value of PM2.5 in the autumn and winter of each regional representative station shows a decreasing trend as a whole, especially after 2017, whereby the decreasing trend was significant. The distribution value of +ΔPM2.5 (PM2.5 hourly growth rate) in the north of the Huai River is lower than that in the south of the Huai River, and both of the +ΔPM2.5 after 2017 showed a significant decreasing trend. The average PM2.5 threshold before the explosive growth is 70.8 µg m−3, and the threshold that is extremely prone to explosive growth is 156 µg m−3 to 277 µg m−3 in north of the Huai River. For the area south of the Huai River, the threshold for PM2.5 explosive growth is relatively low, as a more stringent threshold also puts forward stricter requirements on atmospheric environmental governance. For example, in Beijing, the peak diameters gradually shift to larger sizes when the growth rate increases. The number concentration increasing mainly distributed in Aitken mode (AIM) and Accumulation mode (ACM) during explosive growth. Among the various components of submicron particulate matter (PM1), organic aerosol (OA), especially primary OA (POA), have become one of the most critical components for the PM2.5 explosive growth in Beijing. During the growth period, the contribution of secondary particulate matter (SPM) to the accumulated pollutants is significantly higher than that of primary particulate matter (PPM). However, the proportion of SPM gradually decreases when the growth rate increases. The contribution of the PPM can reach 48% in explosive growth. Compared to slow and rapid growth, explosive growth mainly occurs in the stable atmosphere of higher humidity, lower pressure, lower temperature, small winds, and low mixed layers.

2020 ◽  
Vol 59 (SN) ◽  
pp. SN1015
Author(s):  
Hideyuki Kanehara ◽  
Yuki Araki ◽  
Hiroyasu Katsuno ◽  
Toshitaka Nakada

1993 ◽  
Vol 324 ◽  
Author(s):  
C. Pickering ◽  
D.A.O. Hope ◽  
W.Y. Leong ◽  
D.J. Robbins ◽  
R. Greef

AbstractIn-situ dual-wavelength ellipsometry and laser light scattering have been used to monitor growth of Si/Si1−x,Gex heterojunction bipolar transistor and multi-quantum well (MQW) structures. The growth rate of B-doped Si0 8Ge0.2 has been shown to be linear, but that of As-doped Si is non-linear, decreasing with time. Refractive index data have been obtained at the growth temperature for x = 0.15, 0.20, 0.25. Interface regions ∼ 6-20Å thickness have been detected at hetero-interfaces and during interrupted alloy growth. Period-to-period repeatability of MQW structures has been shown to be ±lML.


2020 ◽  
Vol 4 (1) ◽  
pp. 9
Author(s):  
Martina Habulan ◽  
Bojan Đurin ◽  
Anita Ptiček Siročić ◽  
Nikola Sakač

Particulate matter (PM) comprises a mixture of chemical compounds and water particles found in the air. The size of suspended particles is directly related to the negative impact on human health and the environment. In this paper, we present an analysis of the PM pollution in urban areas of Croatia. Data on PM10 and PM2.5 concentrations were measured with nine instruments at seven stationary measuring units located in three continental cities, namely Zagreb (the capital), Slavonski Brod, and Osijek, and two cities on the Adriatic coast, namely Rijeka and Dubrovnik. We analyzed an hourly course of PM2.5 and PM10 concentrations and average seasonal PM2.5 and PM10 concentrations from 2017 to 2019. At most measuring stations, maximum concentrations were recorded during autumn and winter, which can be explained by the intensive use of fossil fuels and traffic. Increases in PM concentrations during the summer months at measuring stations in Rijeka and Dubrovnik may be associated with the intensive arrival of tourists by air during the tourist season, and lower PM concentrations during the winter periods may be caused by a milder climate consequently resulting in lower consumption of fossil fuels and use of electric energy for heating.


Author(s):  
Zhiyuan Wang ◽  
Xiaoyi Shi ◽  
Chunhua Pan ◽  
Sisi Wang

Exploring the relationship between environmental air quality (EAQ) and climatic conditions on a large scale can help better understand the main distribution characteristics and the mechanisms of EAQ in China, which is significant for the implementation of policies of joint prevention and control of regional air pollution. In this study, we used the concentrations of six conventional air pollutants, i.e., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone (O3), derived from about 1300 monitoring sites in eastern China (EC) from January 2015 to December 2018. Exploiting the grading concentration limit (GB3095-2012) of various pollutants in China, we also calculated the monthly average air quality index (AQI) in EC. The results show that, generally, the EAQ has improved in all seasons in EC from 2015 to 2018. In particular, the concentrations of conventional air pollutants, such as CO, SO2, and NO2, have been decreasing year by year. However, the concentrations of particulate matter, such as PM2.5 and PM10, have changed little, and the O3 concentration increased from 2015 to 2018. Empirical mode decomposition (EOF) was used to analyze the major patterns of AQI in EC. The first mode (EOF1) was characterized by a uniform structure in AQI over EC. These phenomena are due to the precipitation variability associated with the East Asian summer monsoon (EASM), referred to as the “summer–winter” pattern. The second EOF mode (EOF2) showed that the AQI over EC is a north–south dipole pattern, which is bound by the Qinling Mountains and Huaihe River (about 35° N). The EOF2 is mainly caused by seasonal variations of the mixed concentration of PM2.5 and O3. Associated with EOF2, the Mongolia–Siberian High influences the AQI variation over northern EC by dominating the low-level winds (10 m and 850 hPa) in autumn and winter, and precipitation affects the AQI variation over southern EC in spring and summer.


2019 ◽  
Author(s):  
Kai Wang ◽  
Ru-Jin Huang ◽  
Martin Brüggemann ◽  
Yun Zhang ◽  
Lu Yang ◽  
...  

Abstract. Particulate air pollution in China is influencing human health, ecosystem and climate. However, the chemical composition of particulate aerosol, especially of the organic fraction, is still not well understood. In this study, particulate aerosol samples with a diameter ≤ 2.5 μm (PM2.5) were collected in January 2014 in three cities located in Northeast, East and Southeast China, i.e., Changchun, Shanghai and Guangzhou, respectively. Organic aerosol (OA) in the PM2.5 samples was analyzed by ultrahigh performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry in both negative mode (ESI−) and positive mode electrospray ionization (ESI+). After a non-target screening including molecular formula assignments, compounds were classified into five groups based on their elemental composition, i.e., CHO, CHON, CHN, CHOS and CHONS. The CHO, CHON and CHN compounds present the dominant signal abundances of 81–99.7 % in the mass spectra and the majority of these compounds were assigned to mono- and polyaromatics, suggesting that anthropogenic emissions are a large source of urban OA in all three cities. However, the chemical characteristics of these compounds varied among different cities. The degree of aromaticity and the number of polyaromatic compounds were significantly higher in samples from Changchun, which could be attributed to the large emissions from residential heating (i.e., coal combustion) during winter time in Northeast China. Moreover, the ESI− analysis showed higher H / C and O / C ratios for organic compounds in Shanghai and Guangzhou compared to samples from Changchun, indicating that OA in lower latitude regions of China experiences more intense photochemical oxidation processes. The majority of sulfur-containing compounds (CHOS and CHONS) in all cities were assigned to aliphatic compounds with low degrees of unsaturation and aromaticity. Again, samples from Shanghai and Guangzhou exhibit a larger chemical similarity but largely differ from those from Changchun.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Wen-cai Zhang ◽  
Yan-ge Wang ◽  
Zheng-feng Zhu ◽  
Fang-qin Wu ◽  
Yu-dong Peng ◽  
...  

Objective. To investigate the role of CD4+CD25+T cells (Tregs) in protecting fine particulate matter (PM-) induced inflammatory responses, and its potential mechanisms.Methods. Human umbilical vein endothelial cells (HUVECs) were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2) of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25−T cells (Teff), or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined.Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), and inflammatory cytokines, such as interleukin (IL-) 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1) to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors.Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.


2018 ◽  
Vol 10 (10) ◽  
pp. 3428 ◽  
Author(s):  
Mengmeng Hao ◽  
Jingying Fu ◽  
Dong Jiang ◽  
Xiaoxi Yan ◽  
Shuai Chen ◽  
...  

Bioenergy is expected to play a key role in achieving a future sustainable energy system. Sweet sorghum-based fuel ethanol, one of the most promising bioenergy sources in China, has been receiving considerable attention. However, the conflict between sweet sorghum development and traditional water use has not been fully considered. The article presents an integrated method for evaluating water stress from sweet sorghum-based fuel ethanol in China. The region for developing sweet sorghum was identified from the perspective of sustainable development of water resources. First, the spatial distribution of the water demand of sweet sorghum-based fuel ethanol was generated with a Decision Support System for Agrotechnology Transfer (DSSAT) model coupled with Geo-Information System (GIS). Subsequently, the surplus of water resources at the provincial scale and precipitation at the pixel scale were considered during the growth period of sweet sorghum, and the potential conflicts between the supply and demand of water resources were analyzed at regional scale monthly. Finally, the development level of sweet sorghum-based fuel ethanol was determined. The results showed that if the pressure of water consumption of sweet sorghum on regional water resources was taken into account, about 23% of the original marginal land was not suitable for development of sweet sorghum-based fuel ethanol, mainly distributed in Beijing, Hebei, Ningxia, Shandong, Shanxi, Shaanxi, and Tianjin. In future energy planning, the water demand of energy plants must be fully considered to ensure its sustainable development.


2017 ◽  
Vol 10 (2) ◽  
pp. 549-563 ◽  
Author(s):  
Annmarie Eldering ◽  
Chris W. O'Dell ◽  
Paul O. Wennberg ◽  
David Crisp ◽  
Michael R. Gunson ◽  
...  

Abstract. The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO2) with the accuracy, resolution, and coverage needed to quantify CO2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014 and has gathered more than 2 years of observations. The v7/v7r operational data products from September 2014 to January 2016 are discussed here. On monthly timescales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO2 dry air mole fraction, XCO2, that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of XCO2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes XCO2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north–south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north–south XCO2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in XCO2 across the Northern Hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO2. As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart XCO2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high-resolution global dataset.


1997 ◽  
Vol 65 (2) ◽  
pp. 173-181 ◽  
Author(s):  
C. J. C. Phillips ◽  
P. N. Johnson ◽  
T. M. Arab

AbstractIn two experiments the growth, body composition and behaviour of steers and heifers kept in a building with natural day length only (average 9·7 h/day, treatment N) were compared with similar groups of animals kept in identical housing with the day length artificially extended to 16 h/day, (treatment L). The effects were recorded for 126 days in steers and 180 days in heifers, with both groups of animals being slaughtered in March when the two experiments ended. There were no effects over the entire experiment on the growth rate or food intake of either steers or heifers. The growth of the steers was reduced in the first 2 weeks after the lights were switched on but they gained more weight to compensate over the next 8 weeks. Over the whole experiment there was no treatment effect on food conversion ratio for either steers or heifers but it was reduced for steers on treatment L over the first 10 weeks. Steers in treatment N produced fatter carcasses than those on treatment L. Ultrasonic scanning of the heifers showed that those on treatment N deposited more fatty tissue between autumn and winter and less between winter and spring compared with those on treatment L.The behaviour of steers on treatment L did not vary over the experiment but steers on treatment N changed their behaviour with season. They slept for more time in winter and less in spring. Over the whole experiment steers on treatment L slept less and spent more time lying ruminating than those on treatment N but the total time spent lying was not affected by treatment. In contrast, the heifers on treatment L lay down for longer than those on treatment N, suggesting that the effect of supplementary light on lying time, which has been observed previously with dairy cows, is confined to female cattle. Heifers on treatment L started mounting each other earlier than heifers on treatment N and, like the steers, they spent less time sleeping It is concluded that extending the photoperiod for cattle in winter reduced body fatness in both steers and heifers and increased the time heifers spend lying down but that there were no major effects on growth rate or food intake.


Sign in / Sign up

Export Citation Format

Share Document