scholarly journals Comparative Genomic Characterization of Buffalo Fibronectin Type III Domain Proteins: Exploring the Novel Role of FNDC5/Irisin as a Ligand of Gonadal Receptors

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1207
Author(s):  
Siwen Wu ◽  
Faiz-ul Hassan ◽  
Yuhong Luo ◽  
Israr Fatima ◽  
Ishtiaq Ahmed ◽  
...  

FN-III proteins are widely distributed in mammals and are usually involved in cellular growth, differentiation, and adhesion. The FNDC5/irisin regulates energy metabolism and is present in different tissues (liver, brain, etc.). The present study aimed to investigate the physiochemical characteristics and the evolution of FN-III proteins and FNDC5/irisin as a ligand targeting the gonadal receptors including androgen (AR), DDB1 and CUL4 associated factor 6 (DCAF6), estrogen-related receptor β (ERR-β), estrogen-related receptor γ (ERR-γ), Krüppel-like factor 15 (KLF15), and nuclear receptor subfamily 3 group C member 1 (NR3C1). Moreover, the putative role of irisin in folliculogenesis and spermatogenesis was also elucidated. We presented the molecular structure and function of 29 FN-III genes widely distributed in the buffalo genome. Phylogenetic analysis, motif, and conserved domain pattern demonstrated the evolutionary well-conserved nature of FN-III proteins with a variety of stable to unstable, hydrophobic to hydrophilic, and thermostable to thermo-unstable properties. The comparative structural configuration of FNDC5 revealed amino acid variations but still the FNDC5 structure of humans, buffalo, and cattle was quite similar to each other. For the first time, we predicted the binding scores and interface residues of FNDC5/irisin as a ligand for six representative receptors having a functional role in energy homeostasis, and a significant involvement in folliculogenesis and spermatogenesis in buffalo.

2021 ◽  
Vol 11 (15) ◽  
pp. 7120
Author(s):  
Mirko Pesce ◽  
Irene La Fratta ◽  
Teresa Paolucci ◽  
Alfredo Grilli ◽  
Antonia Patruno ◽  
...  

The beneficial effects of exercise on the brain are well known. In general, exercise offers an effective way to improve cognitive function in all ages, particularly in the elderly, who are considered the most vulnerable to neurodegenerative disorders. In this regard, myokines, hormones secreted by muscle in response to exercise, have recently gained attention as beneficial mediators. Irisin is a novel exercise-induced myokine, that modulates several bodily processes, such as glucose homeostasis, and reduces systemic inflammation. Irisin is cleaved from fibronectin type III domain containing 5 (FNDC5), a transmembrane precursor protein expressed in muscle under the control of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). The FNDC5/irisin system is also expressed in the hippocampus, where it stimulates the expression of the neurotrophin brain-derived neurotrophic factor in this area that is associated with learning and memory. In this review, we aimed to discuss the role of irisin as a key mediator of the beneficial effects of exercise on synaptic plasticity and memory in the elderly, suggesting its roles within the main promoters of the beneficial effects of exercise on the brain.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Hongmei Peng ◽  
Oscar Carretero ◽  
Xiao-Ping Yang ◽  
Pablo Nakagawa ◽  
Jiang Xu ◽  
...  

Elevated interleukin-4 (IL-4) levels are positively related to cardiac fibrosis in heart failure and hypertension. Using Balb/c exhibiting high circulating IL-4, Balb/c- Il4 tm2Nnt (IL-4 knockout with Balb/c background, IL-4 -/- ) and C57BL/6 mice, as well as cultured cardiac fibroblasts (CFs), we hypothesized that 1) high levels of IL-4 result in cardiac fibrosis, making the heart susceptible to angiotensin II (Ang II)-induced damage, and 2) IL-4 potently stimulates collagen production by CFs. Each strain (9- to 12-week old male) received vehicle or Ang II (1.4 mg/kg/day, s.c. via osmotic mini-pump) for 8 weeks. Cardiac fibrosis and function were determined by histology and echocardiography, respectively. Compared to C57BL/6, Balb/c mice had doubled interstitial collagen in the heart, enlarged left ventricle and decreased cardiac function along with elevated cardiac IL-4 protein (1.00±0.08 in C57BL/6 vs 2.61±0.46 in Balb/c, p <0.05); all those changes were significantly attenuated in IL-4 -/- (Table 1). Ang II further deteriorated cardiac fibrosis and dysfunction in Balb/c; these detrimental effects were attenuated in IL-4 -/- , although the three strains had a similar level of hypertension. In vitro study revealed that IL-4Rα was constitutively expressed in CFs (Western blot), and IL-4 potently stimulated collagen production by CFs (hydroxproline assay, from 18.89±0.85 to 38.81±3.61 μg/mg at 10 ng/ml, p <0.01). Our study demonstrates for the first time that IL-4, as a potent pro-fibrotic cytokine in the heart, contributes to cardiac fibrotic remodeling and dysfunction. Thus IL-4 may be a potential therapeutic target for cardiac fibrosis and dysfunction.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  

This article has been produced by the Combined Threat Assessment Group (CTAG). It provides in detail, and publicly for the first time, a genuinely informed explanation for the origins and function of CTAG. It covers the nature and challenge of threat assessment, the methodology applied as well various iterations of the threat assessments that are undertaken. This leads on to an explanation of how New Zealand’s National Terrorism Threat Level is set. Overall, this article provides an informative and well-rounded explanation of the components that comprise the National Terrorism Threat Level and makes for essential reading for wider public service, academic, and security conscious public and private institutions across the country.


2015 ◽  
Vol 112 (12) ◽  
pp. 3606-3611 ◽  
Author(s):  
Jinzhou Yuan ◽  
David M. Raizen ◽  
Haim H. Bau

The ability to orient oneself in response to environmental cues is crucial to the survival and function of diverse organisms. One such orientation behavior is the alignment of aquatic organisms with (negative rheotaxis) or against (positive rheotaxis) fluid current. The questions of whether low-Reynolds-number, undulatory swimmers, such as worms, rheotax and whether rheotaxis is a deliberate or an involuntary response to mechanical forces have been the subject of conflicting reports. To address these questions, we use Caenorhabditis elegans as a model undulatory swimmer and examine, in experiment and theory, the orientation of C. elegans in the presence of flow. We find that when close to a stationary surface the animal aligns itself against the direction of the flow. We elucidate for the first time to our knowledge the mechanisms of rheotaxis in worms and show that rheotaxis can be explained solely by mechanical forces and does not require sensory input or deliberate action. The interaction between the flow field induced by the swimmer and a nearby surface causes the swimmer to tilt toward the surface and the velocity gradient associated with the flow rotates the animal to face upstream. Fluid mechanical computer simulations faithfully mimic the behavior observed in experiments, supporting the notion that rheotaxis behavior can be fully explained by hydrodynamics. Our study highlights the important role of hydrodynamics in the behavior of small undulating swimmers and may assist in developing control strategies to affect the animals’ life cycles.


2021 ◽  
Author(s):  
Mehmet Oguz Gok ◽  
Natalie Ortiz Speer ◽  
W. Mike Henne ◽  
Jonathan R. Friedman

AbstractThe asymmetric distribution of phospholipids in membranes is a fundamental principle of cellular compartmentalization and organization. Phosphatidylethanolamine (PE), a nonbilayer phospholipid that contributes to organelle shape and function, is synthesized at several subcellular localizations via semi-redundant pathways. Previously, we demonstrated in the yeast Saccharomyces cerevisiae that the PE synthase Psd1, which primarily operates on the mitochondrial inner membrane, is additionally targeted to the endoplasmic reticulum (ER). While ER-localized Psd1 is required to support cellular growth in the absence of redundant pathways, its physiological function at the ER is unclear. We now demonstrate that ER-localized Psd1 sub-localizes on the ER to lipid droplet (LD) attachment sites and further show it is specifically required for normal LD formation. We also find that the role of PSD enzymes in LD formation is conserved in other organisms. Thus, we have identified PSD enzymes as novel regulators of LDs and demonstrate that both mitochondria and LDs in yeast are organized and shaped by the spatial positioning of a single PE synthesis enzyme.


2021 ◽  
Author(s):  
Jinxi Huang ◽  
Weiwei Yuan ◽  
Beibei Chen ◽  
Gaofeng Li ◽  
Xiaobing Chen

Abstract BackgroundExtracellular leucine rich repeat and fibronectin type III domain containing 1-antisense RNA 1 (ELFN1-AS1) was upregulated in tumors. Nevertheless, the biological functions of ELFN1-AS1 in gastric cancer are not fully understood.MethodsThe ELFN1-AS1, miR-211-3p and TRIM29 expression levels were determined by reverse transcription-quantitative PCR. CCK8, EDU and colony formation assays were done to test the GC cell vitality. The migratory and invasive capabilities of GC cells were further measured by transwell invasion and cell scratch assays. The ceRNA activity of ELFN1-AS1 for TRIM29 via miR-211-3pp was ascertained through pull down, RIP and luciferase reporter assays.ResultsELFN1-AS1 and TRIM29 were robustly expressed in gastric cancer tissues and negatively associated overall survival time of patients. The ELFN1-AS1 silence blocked the proliferation, migration and invasion of GC cells. The oncogenic role of ELFN1-AS1 was recognized to be modulated by miR-211-3pp, which competitively bind to 3'UTR TRIM29 and resulted in the reduced expression of TRIM29.ConclusionELFN1-AS1 maintained the tumorigensis of GC cells by ELFN1-AS1/miR-211-3pp/TRIM29 axis, suggesting that intervention targeting this axis may be warranted for GC treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Saboor Ahmad ◽  
Shahmshad Ahmed Khan ◽  
Khalid Ali Khan ◽  
Jianke Li

Hypopharyngeal glands (HGs) are the most important organ of hymenopterans which play critical roles for the insect physiology. In honey bees, HGs are paired structures located bilaterally in the head, in front of the brain between compound eyes. Each gland is composed of thousands of secretory units connecting to secretory duct in worker bees. To better understand the recent progress made in understanding the structure and function of these glands, we here review the ontogeny of HGs, and the factors affecting the morphology, physiology, and molecular basis of the functionality of the glands. We also review the morphogenesis of HGs in the pupal and adult stages, and the secretory role of the glands across the ages for the first time. Furthermore, recent transcriptome, proteome, and phosphoproteome analyses have elucidated the potential mechanisms driving the HGs development and functionality. This adds a comprehensive novel knowledge of the development and physiology of HGs in honey bees over time, which may be helpful for future research investigations.


2020 ◽  
Vol 10 (5) ◽  
pp. 669-675
Author(s):  
Junzhi Pan ◽  
Jie Zhang

Intestinal injury caused by sepsis has multiple effects on the pathophysiology and development of sepsis. In this study, we aimed to explore the role of FNDC5 in progression of sepsis-induced intestinal injury. The expression of FNDC5 in blood samples of patients with sepsis-induced intestinal injury and IEC-6 cells was measured by qRT-PCR assay. Cell viability and inflammatory cytokines were evaluated by CCK-8 and ELISA assay, respectively. Oxidative stress level was detected by DCFH-DA staining and corresponding kit. Tunel assay and western blot analysis were performed to assess cell apoptosis. FNDC5 expression in patients with sepsis-induced intestinal injury was significantly decreased. The stimulation of LPS reduced expression level of FNDC5 and inhibited cell growth in IEC-6 cells. Overexpression of FNDC5 suppressed the productions of TNF-a, IL-1 , IL-6 and MCP1, diminished the level of ROS and MPO while enhanced the SOD activity. Additionally, upregulation of FNDC5 ameliorated cell apoptosis and repressed the levels of apoptosis-related proteins. FNDC5 could play a crucial role in the inflammation, oxidative stress and apoptosis in sepsis-induced intestinal injury.


2012 ◽  
Vol 48 (3) ◽  
pp. 654-659 ◽  
Author(s):  
Samira Fargali ◽  
Masato Sadahiro ◽  
Cheng Jiang ◽  
Amy L. Frick ◽  
Tricia Indall ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Pallav Sengupta ◽  
Sulagna Dutta ◽  
Ivan Rolland Karkada ◽  
Roland Eghoghosoa Akhigbe ◽  
Suresh V. Chinni

Irisin is a novel skeletal muscle- and adipose tissue-secreted peptide. It is conventionally regarded as an adipomyokine and is a cleaved fragment of Fibronectin type III domain-containing protein 5 (FNDC5). It is involved in the browning of white adipose tissue, glucose tolerance, and reversing of metabolic disruptions. Fertility is closely linked to energy metabolism and the endocrine function of the adipose tissue. Moreover, there is established association between obesity and male infertility. Irisin bears strong therapeutic promise in obesity and its associated disorders, as well as shown to improve male reproductive functions. Thus, irisin is a molecule of great interest in exploring the amelioration of metabolic syndrome or obesity-induced male infertility. In this review we aim to enumerate the most significant aspects of irisin actions and discuss its involvement in energy homeostasis and male reproduction. Though current and future research on irisin is very promiscuous, a number of clarifications are still needed to reveal its full potential as a significant medicinal target in several human diseases including male infertility.


Sign in / Sign up

Export Citation Format

Share Document