scholarly journals Clinical Application and Efficacy of Silver Drug in Ophthalmology: A Literature Review and New Formulation of EYE Drops with Drug Silver (I) Complex of Metronidazole with Improved Dosage Form

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 210
Author(s):  
Arleta Waszczykowska ◽  
Dominik Żyro ◽  
Justyn Ochocki ◽  
Piotr Jurowski

The use of silver preparations in medicine is becoming increasingly popular. The basic aim of this evaluation was to review the literature on the clinical (in vivo) and antibacterial potential of silver preparations in ophthalmic diseases. The second goal was to summarize the results of experimental research on the use of silver preparations in ophthalmology. The third objective was to present a method for stabilizing eye drops containing silver (I) complex. Analysis of the pH stability of the silver (I) complex with metronidazole in the prepared dosage form (eye drops) was carried out. Most silver preparations are clinically used for topical application. Few experimental results indicate the usefulness of intraocular or systemic administration of silver (I) preparations as an alternative or additional therapy in infectious and angiogenic eye diseases. The development of a new formulation increases the stability of the dosage form. New forms of silver (I) products will certainly find application in the treatment of many ophthalmic diseases. One of the most important features of the silver (I) complex is its capacity to break down bacterial resistance. The new eye drops formula can significantly improve comfort of use. Due to their chemical nature, silver (I) compounds are difficult to stabilize, especially in the finished dosage form.

Author(s):  
SRI AGUNG FITRI KUSUMA ◽  
MARLINE ABDASSAH

Objective: The purpose of this study was to determine a sterile 0.5% chloramphenicol eye drop formula with the best potency of antibacterial by determining the appropriate sterilization method and the supporting pH. Methods: 0.5% chloramphenicol was formulated with 0.01% thimerosal, which act as a bactericide and combines with borate buffer to produce eye drop formulas with variations in pH (6.8, 7.0 and 7.4). All formulas were stored at room temperature for 28 d and were evaluated, including: organoleptic of the preparations, sterility, pH stability, and the antibacterial potency of chloramphenicol in eye drops. Results: All dosage formulas did not undergo photodegradation reactions which were marked by no change in color until the end of the storage period. However, the formula with pH 6.8 which was sterilized by heating in a presence of bactericide, showed the presence of more particulate precipitates than in the pH 6.8 formula which was sterilized using membrane filter bacteria. However, both methods of sterilization produced sterile chloramphenicol eye drops. The preparation using a method of heat sterilization with bactericide decreased the pH greater than the preparation using a sterile bacterial filter sterilization method. C2 preparations at pH 7.0 and sterilized using the bacterial filter membrane sterilization method were more stable because they had the smallest pH change of 0.05 and the percentage reduction in antibacterial potential was smaller at 1.15%. Conclusion: The best treatment for the chloramphenicol eye drop was kept the pH formula at pH 7 and sterilized using bacterial filter membrane sterilization method.


Author(s):  
Petrukhina D.A. ◽  
Pletneva I.V. ◽  
Pokrovskaya Y.S.

One of the urgent tasks in the process of drug development is to obtain stable pharmaceutical products in the process of storage and use. To establish the expiration date, it is necessary to determine the time during which the developed drug is able to maintain stability and meet all the requirements stated in the regulatory documentation. The aim of the study was to study the stability of laboratory samples of wound healing gel with cycvalone during long-term storage in natural conditions. The developed composition of the wound healing gel includes the antioxidant agent cycvalone, which has a pronounced manifestation of antioxidant and anti-radical activity, as well as has a wound healing, immunotropic and anti-inflammatory effect. Carbomer (Carbopol-940), potassium hydroxide solution and purified water were used as excipients. Gel samples were stored in the primary packaging at room temperature in a place protected from light. The stability of the dosage form was studied according to the following parameters: description, pH of water extraction, authenticity, colloidal and thermal stability, quantitative determination, rheological parameters in accordance with the developed methods. The measurement was performed on 6 series of dosage forms: after preparation, after 6, 12, 18 and 24 months of storage in vivo. The results of determining the quality indicators of the wound healing gel with an antioxidant agent (cycvalone) indicate a rational selection of active and auxiliary substances and their concentration, the choice of a rational technology and the absence of interaction between the components of the developed dosage form. Based on the conducted studies, it is proved that the wound healing gel with cycvalone remains stable during storage at a temperature of 15 to 25 ˚С for 24 months.


2018 ◽  
Vol 3 (4) ◽  
pp. 219-226
Author(s):  
Eric Gautier ◽  
Justine Saillard ◽  
Caroline Deshayes ◽  
Sandy Vrignaud ◽  
Frederic Lagarce ◽  
...  

Abstract Background Microbial keratitis are severe infectionsgenerally linked to risk factors. High-doses antibiotic eye-drops could be required to avoid severe complications. In such cases, hospital pharmacists are in charge of their production given the lack of such formulations on the market. The stability of these antibiotic eye-drops is generally limited to a couple of days and publications generally do not describe addition of microbial preservatives even though it is a European Pharmacopeia requirement. The aim of this study was to describe a new ceftazidime eye-drops formulation at 50 mg/mL with a antimicrobial additive, benzalkonium chloride at 0.04 mg/mL. Methods Physico-chemical studies of this new formulation were performed by a stability indicating HPLC-UV method validated according to ICH standards, osmolality measurements, pH monitoring and visual examinations. Antimicrobial preservative efficacy was evaluated according to the method from the European Pharmacopeia. Results After 75 days at −20 °C followed by 7 days at 4 °C, or after 7 days at 4 °C, the eye-drops were stable. A degradation trend was finally observed at day 14 at 4 °C. Conclusions A new ceftazidime eye-drops formulation is proposed with a stability of 7 days. Outpatients do not need to return to the hospital pharmacy for repeat dispensing, thus possibly improving treatment compliance.


2020 ◽  
Vol 73 (1) ◽  
Author(s):  
Renata Urban-Chmiel ◽  
Ireneusz Balicki ◽  
Katarzyna Świąder ◽  
Anna Nowaczek ◽  
Ewelina Pyzik ◽  
...  

Abstract Background The purpose of the study was to evaluate the in vitro antibacterial effect of experimental eye drops with bacteriophages in elimination of Staphylococcus spp. isolated from dogs with bacterial conjunctivitis.. The bacterial material was collected from dogs with independent clinical signs of bacterial conjunctivitis. Staphylococcus spp. were identified by phenotypic and genotypic methods (MALDI-TOF MS mass spectrometry). Antibiotic resistance was determined by the disc-diffusion method. Phage activity (Plaque forming units, PFU) was determined on double-layer agar plates. Phages with lytic titres > 108 PFU were used to prepare eye drops. The stability of the antibacterial titre was evaluated for preparations stored in sealed bottles as well as after opening and reclosing. Results The tests confirmed the occurrence of Staphylococcus spp. strains as etiological agents of bacterial conjunctivitis in dogs. A high percentage of strains were resistant to more than three antibiotics. The experimental phage eye drops used in the study exhibited 100% efficacy in vitro against the tested Staphylococcus isolates. Particularly noteworthy is the long duration of activity and constant antibacterial lytic titre of ≥108 PFU/mL of two eye drop solutions, nos. 7 and 12, after the bottle had been opened (21 days) and after hermetically sealed packaging (28 days) at 4–8 °C. Conclusions The results represent the first stage of research and require continuation in vivo. If positive effects are obtained in animals, the results can be used in applied research in humans and animals.


2020 ◽  
Vol 9 (2) ◽  
pp. 67-71
Author(s):  
S. I. Kosenkova ◽  
I. I. Krasnyuk ◽  
I. I. Krasnyuk (jr.) ◽  
A. V. Belyatskaya ◽  
O. I. Stepanova ◽  
...  

Introduction. An innovative antifungal viscous solution based on naftifine hydrochloride with a combination of polyethylene glycols (PEG) was developed in the laboratory of Sechenov University. The developed preparation intended for external use. The active ingredient – naftifine hydrochloride has a wide spectrum of action against fungi cause onychomycosis. The polyethylene glycols are included in the developed dosage form of provide the necessary viscosity of the solution (for accurate application and retention in the field of application). The paper presents the results of a study of the stability of a viscous solution of naftifine hydrochloride with a combination of PEG for external use. Over the entire shelf life, the drug must retain the full its chemical, physical, biopharmaceutical and pharmacological properties.Aim. Determination of stability and expiration date of the shelf life of the developed solution of naftifine hydrochloride for external use, intended for the treatment of mycosis of the nail.Materials and methods. Naftifine hydrochloride solution, «Millipor» filter, UV spectrophotometry, potentiometry pH, capillary viscometry.Results and discussion. In the course of the study, the shelf life of the developed alcohol solution of naftifin hydrochloride with a combination of PEG was experimentally determined. The stability of the dosage form was determined by accelerated aging at a temperature of 40 ± 2 °C, in vivo at a temperature of no higher than 25 °C; and in a refrigerator at a temperature of 8 ± 2 °C. Assessment of the stability of the alcohol solution of naftifine hydrochloride was carried out according to the following indicators: the volume of the contents of the bottle, appearance, pH, quantitative content of the active substance, viscosity.Conclusion. Based on the studies, it is recommended to store the naftifine hydrochloride solution at room temperature not higher than 25 °C, in a dark place. It is also allowed to store the solution of naftifine hydrochloride in a refrigerator at a temperature of 8 ± 2 °C.


Author(s):  
Robert J. Carroll ◽  
Marvin P. Thompson ◽  
Harold M. Farrell

Milk is an unusually stable colloidal system; the stability of this system is due primarily to the formation of micelles by the major milk proteins, the caseins. Numerous models for the structure of casein micelles have been proposed; these models have been formulated on the basis of in vitro studies. Synthetic casein micelles (i.e., those formed by mixing the purified αsl- and k-caseins with Ca2+ in appropriate ratios) are dissimilar to those from freshly-drawn milks in (i) size distribution, (ii) ratio of Ca/P, and (iii) solvation (g. water/g. protein). Evidently, in vivo organization of the caseins into the micellar form occurs in-a manner which is not identical to the in vitro mode of formation.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


2018 ◽  
Vol 4 (4) ◽  
pp. 523-531
Author(s):  
Hina Mumtaz ◽  
Muhammad Asim Farooq ◽  
Zainab Batool ◽  
Anam Ahsan ◽  
Ashikujaman Syed

The main purpose of development pharmaceutical dosage form is to find out the in vivo and in vitro behavior of dosage form. This challenge is overcome by implementation of in-vivo and in-vitro correlation. Application of this technique is economical and time saving in dosage form development. It shortens the period of development dosage form as well as improves product quality. IVIVC reduce the experimental study on human because IVIVC involves the in vivo relevant media utilization in vitro specifications. The key goal of IVIVC is to serve as alternate for in vivo bioavailability studies and serve as justification for bio waivers. IVIVC follows the specifications and relevant quality control parameters that lead to improvement in pharmaceutical dosage form development in short period of time. Recently in-vivo in-vitro correlation (IVIVC) has found application to predict the pharmacokinetic behaviour of pharmaceutical preparations. It has emerged as a reliable tool to find the mode of absorption of several dosage forms. It is used to correlate the in-vitro dissolution with in vivo pharmacokinetic profile. IVIVC made use to predict the bioavailability of the drug of particular dosage form. IVIVC is satisfactory for the therapeutic release profile specifications of the formulation. IVIVC model has capability to predict plasma drug concentration from in vitro dissolution media.


2019 ◽  
Vol 26 (5) ◽  
pp. 339-347 ◽  
Author(s):  
Dilani G. Gamage ◽  
Ajith Gunaratne ◽  
Gopal R. Periyannan ◽  
Timothy G. Russell

Background: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. Objective: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. Methods: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. Results: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. Conclusion: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sean Swetledge ◽  
Renee Carter ◽  
Rhett Stout ◽  
Carlos E. Astete ◽  
Jangwook P. Jung ◽  
...  

AbstractPolymeric nanoparticles have been investigated as potential delivery systems for therapeutic compounds to address many ailments including eye disease. The stability and spatiotemporal distribution of polymeric nanoparticles in the eye are important regarding the practical applicability and efficacy of the delivery system in treating eye disease. We selected poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with lutein, a carotenoid antioxidant associated with eye health, as our model ophthalmic nanodelivery system and evaluated its stability when suspended in various conditions involving temperature and light exposure. We also assessed the ocular biodistribution of the fluorescently labeled nanoparticle vehicle when administered topically. Lutein-loaded nanoparticles were stable in suspension when stored at 4 °C with only 26% lutein release and no significant lutein decay or changes in nanoparticle morphology. When stored at 25 °C and 37 °C, these NPs showed signs of bulk degradation, had significant lutein decay compared to 4 °C, and released over 40% lutein after 5 weeks in suspension. Lutein-loaded nanoparticles were also more resistant to photodegradation compared to free lutein when exposed to ultraviolet (UV) light, decaying approximately 5 times slower. When applied topically in vivo, Cy5-labled nanoparticles showed high uptake in exterior eye tissues including the cornea, episcleral tissue, and sclera. The choroid was the only inner eye tissue that was significantly higher than the control group. Decreased fluorescence in all exterior eye tissues and the choroid at 1 h compared to 30 min indicated rapid elimination of nanoparticles from the eye.


Sign in / Sign up

Export Citation Format

Share Document