scholarly journals Circular RNAs in Hedgehog Signaling Activation and Hedgehog-Mediated Medulloblastoma Tumors

Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5138
Author(s):  
Ani Azatyan ◽  
Shasha Zhang ◽  
Anna Darabi ◽  
Peter Siesjö ◽  
Ting Wang ◽  
...  

Within the past decade, circular RNAs have largely emerged as novel regulators of human biology, including brain function and cancer development. On the other hand, the Hedgehog pathway has established roles in regulating biological processes, including tumorigenesis. Here, the circular RNA transcriptome, in the context of Hedgehog signaling activation of medulloblastoma Daoy and human embryonic palatal mesenchyme HEPM cells, was determined. In total, 29 out of the 30 selected circular RNAs were validated by Sanger sequencing, with some regulated to a limited extent by Hedgehog signaling. Interestingly, back-spliced junctions, the marker of exonic RNA circles, were also identified at a low frequency within poly (A) mRNAs, reflecting exon repetition events. Thirteen circular RNAs had reduced expression in human medulloblastoma tumors in comparison to normal cerebellum. For seven out of these thirteen RNA circles, the linear mRNAs originating from the same genes did not exhibit a reduced expression. Depletion and/or overexpression of these seven circular RNAs minimally affected medulloblastoma cell proliferation. These findings highlight that differential expression of a gene product may not necessarily elicit an obvious phenotypic impact. Consequently, further analysis is required to determine the possible subtle contributions to the development of this cerebellar tumor.

2020 ◽  
Author(s):  
Zelin Liu ◽  
Huiru Ding ◽  
Jianqi She ◽  
Chunhua Chen ◽  
Weiguang Zhang ◽  
...  

AbstractCircular RNAs (circRNAs) are involved in various biological processes and in disease pathogenesis. However, only a small number of functional circRNAs have been identified among hundreds of thousands of circRNA species, partly because most current methods are based on circular junction counts and overlook the fact that circRNA is formed from the host gene by back-splicing (BS). To distinguish between expression originating from BS and that from the host gene, we present DEBKS, a software program to streamline the discovery of differential BS between two rRNA-depleted RNA sequencing (RNA-seq) sample groups. By applying real and simulated data and employing RT-qPCR for validation, we demonstrate that DEBKS is efficient and accurate in detecting circRNAs with differential BS events between paired and unpaired sample groups. DEBKS is available at https://github.com/yangence/DEBKS as open-source software.


2020 ◽  
Author(s):  
Kun Wang ◽  
Zhimin Zhou ◽  
Junping Bao ◽  
Dong Liu ◽  
Yuanbin Hu ◽  
...  

Abstract Background: More and more evidences show that non-coding RNAs are involved in neuropathic pain, however, there are few reports on the regulatory mechanism of competitive endogenous RNA (ceRNA) in neuropathic pain. The purpose of this study is to explore the possible molecular mechanisms of neuropathic pain. Methods: We collected neuropathic pain-related microarray datasets providing expression profile of circular RNAs (circRNAs) and mRNAs from the Gene Expression Omnibus (GEO) and then performed bioinformatics analysis on them. Results: The present study has identified that up-regulated circRNAs primarily regulate the activity of focal adhesion-associated biological processes and down-regulated primarily regulate the activity of metabolic-associated biological processes by means of ceRNAs. Conclusions: Our data suggest that circRNAs may be candidates for pathogenesis in neuropathic pain and may be considered as promising therapeutic targets in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianli Yang ◽  
Yang Li ◽  
Feng Zhao ◽  
Liuhua Zhou ◽  
Ruipeng Jia

Circular RNAs (circRNAs) are a class of novel non-coding RNAs (ncRNAs). Emerging evidence demonstrates that circRNAs play crucial roles in many biological processes by regulating linear RNA transcription, downstream gene expression and protein or peptide translation. Meanwhile, recent studies have suggested that circRNAs have the potential to be oncogenic or anti-oncogenic and play vital regulatory roles in the initiation and progression of tumors. Circular RNA Forkhead box O3 (circ-Foxo3, hsa_circ_0006404) is encoded by the human FOXO3 gene and is one of the most studied circular RNAs acting as a sponge for potential microRNAs (miRNAs) (Du et al., 2016). Previous studies have reported that circ-Foxo3 is involved in the development and tumorigenesis of a variety of cancers (bladder, gastric, acute lymphocytic leukemia, glioma, etc.). In this review, we summarize the current studies concerning circ-Foxo3 deregulation and the correlative mechanism in various human cancers. We also point out the potential clinical applications of this circRNA as a biomarker for cancer diagnosis and prognosis.


RSC Advances ◽  
2019 ◽  
Vol 9 (24) ◽  
pp. 13722-13735 ◽  
Author(s):  
Lifang Shi ◽  
Xiaohuan Jia ◽  
Tiantian Guo ◽  
Lu Cheng ◽  
Xiaoxiao Han ◽  
...  

Circular RNAs (circRNAs) play important roles in regulating various biological processes; however, their roles in regulating the toxicity of engineered nanomaterials (ENMs) are still unclear.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Wenchao Zhang ◽  
Lin Qi ◽  
Ruiqi Chen ◽  
Jieyu He ◽  
Zhongyue Liu ◽  
...  

AbstractOver the past decades, circular RNAs (circRNAs) have emerged as a hot spot and sparked intensive interest. Initially considered as the transcriptional noises, further studies have indicated that circRNAs are crucial regulators in multiple cellular biological processes, and thus engage in the development and progression of many diseases including osteoarthritis (OA). OA is a prevalent disease that mainly affects those aging, obese and post-traumatic population, posing as a major source of socioeconomic burden. Recently, numerous circRNAs have been found aberrantly expressed in OA tissues compared with counterparts. More importantly, circRNAs have been demonstrated to interplay with components in OA microenvironments, such as chondrocytes, synoviocytes and macrophages, by regulation of their proliferation, apoptosis, autophagy, inflammation, or extracellular matrix reorganization. Herein, in this review, we extensively summarize the roles of circRNAs in OA microenvironment, progression, and putative treatment, as well as envision the future directions for circRNAs research in OA, with the aim to provide a novel insight into this field.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Zhang ◽  
Yu Chen ◽  
Yue Wan ◽  
Yueshui Zhao ◽  
Qinglian Wen ◽  
...  

Oxidative stress caused by an imbalance between the production and elimination of reactive metabolites and free radicals can lead to the development of a variety of diseases. Over the past years, with the development of science and technology, circular RNA (circRNA) has been found to be closely associated with oxidative stress, which plays an important role in the process of oxidative stress. Currently, the understanding of circRNAs in the mechanism of oxidative stress is limited. In this review, we described the relationship between oxidative stress and circRNAs, the circRNAs related to oxidative stress, and the role of circRNAs in promoting or inhibiting the occurrence and development of diseases associated with the oxidative stress system.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 177 ◽  
Author(s):  
Biao Chen ◽  
Jiao Yu ◽  
Lijin Guo ◽  
Mary Byers ◽  
Zhijun Wang ◽  
...  

Circular RNAs and microRNAs widely exist in various species and play crucial roles in multiple biological processes. It is essential to study their roles in myogenesis. In our previous sequencing data, both miR-30a-3p and circular HIPK3 (circHIPK3) RNA, which are produced by the third exon of the HIPK3 gene, were differentially expressed among chicken skeletal muscles at 11 embryo age (E11), 16 embryo age (E16), and 1-day post-hatch (P1). Here, we investigated their potential roles in myogenesis. Proliferation experiment showed that miR-30a-3p could inhibit the proliferation of myoblast. Through dual-luciferase assay and Myosin heavy chain (MYHC) immunofluorescence, we found that miR-30a-3p could inhibit the differentiation of myoblast by binding to Myocyte Enhancer Factor 2 C (MEF2C), which could promote the differentiation of myoblast. Then, we found that circHIPK3 could act as a sponge of miR-30a-3p and exerted a counteractive effect of miR-30a-3p by promoting the proliferation and differentiation of myoblasts. Taking together, our data suggested that circHIPK3 could promote the chicken embryonic skeletal muscle development by sponging miR-30a-3p.


Author(s):  
Leslie M. Loew

A major application of potentiometric dyes has been the multisite optical recording of electrical activity in excitable systems. After being championed by L.B. Cohen and his colleagues for the past 20 years, the impact of this technology is rapidly being felt and is spreading to an increasing number of neuroscience laboratories. A second class of experiments involves using dyes to image membrane potential distributions in single cells by digital imaging microscopy - a major focus of this lab. These studies usually do not require the temporal resolution of multisite optical recording, being primarily focussed on slow cell biological processes, and therefore can achieve much higher spatial resolution. We have developed 2 methods for quantitative imaging of membrane potential. One method uses dual wavelength imaging of membrane-staining dyes and the other uses quantitative 3D imaging of a fluorescent lipophilic cation; the dyes used in each case were synthesized for this purpose in this laboratory.


2020 ◽  
Vol 26 ◽  
Author(s):  
Pengmian Feng ◽  
Lijing Feng ◽  
Chaohui Tang

Background and Purpose: N 6 -methyladenosine (m6A) plays critical roles in a broad set of biological processes. Knowledge about the precise location of m6A site in the transcriptome is vital for deciphering its biological functions. Although experimental techniques have made substantial contributions to identify m6A, they are still labor intensive and time consuming. As good complements to experimental methods, in the past few years, a series of computational approaches have been proposed to identify m6A sites. Methods: In order to facilitate researchers to select appropriate methods for identifying m6A sites, it is necessary to give a comprehensive review and comparison on existing methods. Results: Since researches on m6A in Saccharomyces cerevisiae are relatively clear, in this review, we summarized recent progresses on computational prediction of m6A sites in S. cerevisiae and assessed the performance of existing computational methods. Finally, future directions of computationally identifying m6A sites were presented. Conclusion: Taken together, we anticipate that this review will provide important guides for computational analysis of m 6A modifications.


Sign in / Sign up

Export Citation Format

Share Document