scholarly journals Apoptosis in the Pancreatic Cancer Tumor Microenvironment—The Double-Edged Sword of Cancer-Associated Fibroblasts

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1653
Author(s):  
Ester Pfeifer ◽  
Joy M. Burchell ◽  
Francesco Dazzi ◽  
Debashis Sarker ◽  
Richard Beatson

Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis. This is attributed to the disease already being advanced at presentation and having a particularly aggressive tumor biology. The PDAC tumor microenvironment (TME) is characterized by a dense desmoplastic stroma, dominated by cancer-associated fibroblasts (CAF), extracellular matrix (ECM) and immune cells displaying immunosuppressive phenotypes. Due to the advanced stage at diagnosis, the depletion of immune effector cells and lack of actionable genomic targets, the standard treatment is still apoptosis-inducing regimens such as chemotherapy. Paradoxically, it has emerged that the direct induction of apoptosis of cancer cells may fuel oncogenic processes in the TME, including education of CAF and immune cells towards pro-tumorigenic phenotypes. The direct effect of cytotoxic therapies on CAF may also enhance tumorigenesis. With the awareness that CAF are the predominant cell type in PDAC driving tumorigenesis with various tumor supportive functions, efforts have been made to try to target them. However, efforts to target CAF have, to date, shown disappointing results in clinical trials. With the help of sophisticated single cell analyses it is now appreciated that CAF in PDAC are a heterogenous population with both tumor supportive and tumor suppressive functions. Hence, there remains a debate whether targeting CAF in PDAC is a valid therapeutic strategy. In this review we discuss how cytotoxic therapies and the induction of apoptosis in PDAC fuels oncogenesis by the education of surrounding stromal cells, with a particular focus on the potential pro-tumorigenic outcomes arising from targeting CAF. In addition, we explore therapeutic avenues to potentially avoid the oncogenic effects of apoptosis in PDAC CAF.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yijia Li ◽  
Yangzhe Wu ◽  
Yi Hu

Cellular metabolism of both cancer and immune cells in the acidic, hypoxic, and nutrient-depleted tumor microenvironment (TME) has attracted increasing attention in recent years. Accumulating evidence has shown that cancer cells in TME could outcompete immune cells for nutrients and at the same time, producing inhibitory products that suppress immune effector cell functions. Recent progress revealed that metabolites in the TME could dysregulate gene expression patterns in the differentiation, proliferation, and activation of immune effector cells by interfering with the epigenetic programs and signal transduction networks. Nevertheless, encouraging studies indicated that metabolic plasticity and heterogeneity between cancer and immune effector cells could provide us the opportunity to discover and target the metabolic vulnerabilities of cancer cells while potentiating the anti-tumor functions of immune effector cells. In this review, we will discuss the metabolic impacts on the immune effector cells in TME and explore the therapeutic opportunities for metabolically enhanced immunotherapy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hong-Bo Li ◽  
Zi-Han Yang ◽  
Qing-Qu Guo

AbstractPancreatic cancer is an extremely malignant tumor with the lowest 5-year survival rate among all tumors. Pancreatic ductal adenocarcinoma (PDAC), as the most common pathological subtype of pancreatic cancer, usually has poor therapeutic results. Immune checkpoint inhibitors (ICIs) can relieve failure of the tumor-killing effect of immune effector cells caused by immune checkpoints. Therefore, they have been used as a novel treatment for many solid tumors. However, PDAC is not sensitive to monotherapy with ICIs, which might be related to the inhibitory immune microenvironment of pancreatic cancer. Therefore, the way to improve the microenvironment has raised a heated discussion in recent years. Here, we elaborate on the relationship between different immune cellular components in this environment, list some current preclinical or clinical attempts to enhance the efficacy of ICIs by targeting the inhibitory tumor microenvironment of PDAC or in combination with other therapies. Such information offers a better understanding of the sophisticated tumor-microenvironment interactions, also providing insights on therapeutic guidance of PDAC targeting.


2021 ◽  
Author(s):  
Débora B. Vendramini Costa

Tumor cells are not alone in the tumor mass; in fact they are surrounded by a complex and active microenvironment, composed by fibroblasts and their extracellular matrix (ECM), immune cells, nerves, blood vessels, and secreted factors. It is now well recognized that the microenvironment plays an important role in tumor development and thus it is imperative for the comprehensive understanding of the interplay between cancer and its microenviroment for the development of better preventative and therapeutic strategies. Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a 5 year survival rate of only 10% after diagnosis[1]. One of the main reasons for this outcome is the poor understanding of the unique microenvironment of PDAC, where up to 90% of the tumor mass can be composed by the stroma, with most of it being the expansion of activated fibroblasts and their ECM[2]. Even though CAFs represent an important component of PDAC (and other types of cancers), they are still incompletely understood. This can be partially explained by the fact that there are no specific markers to discriminate CAFs, and researchers need to rely on negative selections, absence of mutations that characterize the transformed epithelial cells plus the presence of mesenchymal markers, all together with the assessment of fibroblastic function2. There are still controversies about the pro- and anti-tumor effects of CAFs and their origin. Recently, a consensus was published2, where authors suggest that CAFs are mostly originated by the local activation and proliferation of resident fibroblasts, stimulated by tissue injury, reactive oxidative species, growth factors and more. These CAFs are characterized by their plasticity, as they can interchange between functions according to the signals of the environment. Many are the functions attributed to these cells; CAFs produce a very dense ECM, which can lead to the collapse of blood vessels, thus affecting nutrient supply and the delivery of therapies to this environment[3]. Moreover, CAFs can be immunusuppressive, producing a millieu of cytokines and chemokines that can turn off anti-tumor immune cells and recruit pro-tumor ones[4]. Interestingly, CAFs can also contribute to the metabolic signature of the environment, as they produce and modify a large range of metabolites, often supporting cancer cell survival[5]. Recently, our research group uncovered the pro-tumor roles of the synaptic protein Netrin G1 in CAFs[6]. The expression of Netrin G1 in CAFs from PDAC patients inversely correlated with overall survival. Moreover, the loss of Netrin G1 in CAFs led to decreased production of immunosuppressive factors, allowing NK cells to kill PDAC cells in vitro. Netrin G1 expression was also important for the production of metabolites (mainly glutamine and glutamate) by CAFs and for the support of nutrient deprived PDAC cells. It is important to mention that the Netrin G1 related studies were perfomed using 3D co-cultures, and that its expression can only be detected in CAFs growing in their 3D environment, further reinforcing the need for better strategies to study and understand the tumor microenvironment in PDAC. Therefore, CAFs can be seen as the major intermediaries of PDAC microenvironment and to target these cells in an attempt to normalize them rather than eliminate them, might be an effective strategy for PDAC therapy. References: [1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin, 2020; 70: 7-30. [2] Sahai E et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer, 2020; 20:174-186 [3] Provenzano et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell, 2012; 21:418-29. [4] Ziani L, Chouaib S, Thiery J. Alteration of the Antitumor Immune Response by Cancer-Associated Fibroblasts. Front Immunol, 2018; 9:414. [5] Lyssiotis CA and Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends Cell Biol, 2017; 27: 863-875. [6] Francescone et al. Netrin G1 promotes pancreatic tumorigenesis through cancer associated fibroblast driven nutritional support and immunosuppression. Cancer Discov. 2020 Oct 30:CD-20-0775. Epub ahead of print.


Oncogene ◽  
2021 ◽  
Author(s):  
Audrey Lequeux ◽  
Muhammad Zaeem Noman ◽  
Malina Xiao ◽  
Kris Van Moer ◽  
Meriem Hasmim ◽  
...  

AbstractHypoxia is a key factor responsible for the failure of therapeutic response in most solid tumors and promotes the acquisition of tumor resistance to various antitumor immune effectors. Reshaping the hypoxic immune suppressive tumor microenvironment to improve cancer immunotherapy is still a relevant challenge. We investigated the impact of inhibiting HIF-1α transcriptional activity on cytotoxic immune cell infiltration into B16-F10 melanoma. We showed that tumors expressing a deleted form of HIF-1α displayed increased levels of NK and CD8+ effector T cells in the tumor microenvironment, which was associated with high levels of CCL2 and CCL5 chemokines. We showed that combining acriflavine, reported as a pharmacological agent preventing HIF-1α/HIF-1β dimerization, dramatically improved the benefit of cancer immunotherapy based on TRP-2 peptide vaccination and anti-PD-1 blocking antibody. In melanoma patients, we revealed that tumors exhibiting high CCL5 are less hypoxic, and displayed high NK, CD3+, CD4+ and CD8+ T cell markers than those having low CCL5. In addition, melanoma patients with high CCL5 in their tumors survive better than those having low CCL5. This study provides the pre-clinical proof of concept for a novel triple combination strategy including blocking HIF-1α transcription activity along vaccination and PD-1 blocking immunotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2995
Author(s):  
Laia Gorchs ◽  
Helen Kaipe

Less than 10% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) survive 5 years or more, making it one of the most fatal cancers. Accumulation of T cells in pancreatic tumors is associated with better prognosis, but immunotherapies to enhance the anti-tumor activity of infiltrating T cells are failing in this devastating disease. Pancreatic tumors are characterized by a desmoplastic stroma, which mainly consists of activated cancer-associated fibroblasts (CAFs). Pancreatic CAFs have emerged as important regulators of the tumor microenvironment by contributing to immune evasion through the release of chemokines, cytokines, and growth factors, which alters T-cell migration, differentiation and cytotoxic activity. However, recent discoveries have also revealed that subsets of CAFs with diverse functions can either restrain or promote tumor progression. Here, we discuss our current knowledge about the interactions between CAFs and T cells in PDAC and summarize different therapy strategies targeting the CAF–T cell axis with focus on CAF-derived soluble immunosuppressive factors and chemokines. Identifying the functions of different CAF subsets and understanding their roles in T-cell trafficking within the tumor may be fundamental for the development of an effective combinational treatment for PDAC.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3542
Author(s):  
Joanna Domagala ◽  
Mieszko Lachota ◽  
Marta Klopotowska ◽  
Agnieszka Graczyk-Jarzynka ◽  
Antoni Domagala ◽  
...  

NK cells have unique capabilities of recognition and destruction of tumor cells, without the requirement for prior immunization of the host. Maintaining tolerance to healthy cells makes them an attractive therapeutic tool for almost all types of cancer. Unfortunately, metabolic changes associated with malignant transformation and tumor progression lead to immunosuppression within the tumor microenvironment, which in turn limits the efficacy of various immunotherapies. In this review, we provide a brief description of the metabolic changes characteristic for the tumor microenvironment. Both tumor and tumor-associated cells produce and secrete factors that directly or indirectly prevent NK cell cytotoxicity. Here, we depict the molecular mechanisms responsible for the inhibition of immune effector cells by metabolic factors. Finally, we summarize the strategies to enhance NK cell function for the treatment of tumors.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ming Jia ◽  
Dan Zhang ◽  
Chunxiang Zhang ◽  
Chunhong Li

AbstractPancreatic cancer is one of the most lethal malignant tumors with a low survival rate, partly because the tumor microenvironment (TME), which consists of extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), immune cells, and vascular systems, prevents effective drug delivery and chemoradiotherapy. Thus, modulating the microenvironment of pancreatic cancer is considered a promising therapeutic approach. Since nanoparticles are one of the most effective cancer treatment strategies, several nano-delivery platforms have been developed to regulate the TME and enhance treatment. Here, we summarize the latest advances in nano-delivery systems that alter the TME in pancreatic cancer by depleting ECM, inhibiting CAFs, reversing immunosuppression, promoting angiogenesis, or improving the hypoxic environment. We also discuss promising new targets for such systems. This review is expected to improve our understanding of how to modulate the pancreatic cancer microenvironment and guide the development of new therapies. Graphical Abstract


2021 ◽  
Vol 12 ◽  
Author(s):  
Pei-Yu Chen ◽  
Wen-Fei Wei ◽  
Hong-Zhen Wu ◽  
Liang-Sheng Fan ◽  
Wei Wang

Cancer-associated fibroblasts (CAFs) are important, highly heterogeneous components of the tumor extracellular matrix that have different origins and express a diverse set of biomarkers. Different subtypes of CAFs participate in the immune regulation of the tumor microenvironment (TME). In addition to their role in supporting stromal cells, CAFs have multiple immunosuppressive functions, via membrane and secretory patterns, against anti-tumor immunity. The inhibition of CAFs function and anti-TME therapy targeting CAFs provides new adjuvant means for immunotherapy. In this review, we outline the emerging understanding of CAFs with a particular emphasis on their origin and heterogeneity, different mechanisms of their regulation, as well as their direct or indirect effect on immune cells that leads to immunosuppression.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoqi Mao ◽  
Jin Xu ◽  
Wei Wang ◽  
Chen Liang ◽  
Jie Hua ◽  
...  

AbstractCancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.


Sign in / Sign up

Export Citation Format

Share Document