scholarly journals A Review on Lactoferrin and Central Nervous System Diseases

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1810
Author(s):  
Yu-Qi Li ◽  
Chuang Guo

Central nervous system (CNS) diseases are currently one of the major health issues around the world. Most CNS disorders are characterized by high oxidative stress levels and intense inflammatory responses in affected tissues. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, plays a significant role in anti-inflammatory, antibacterial, antiviral, reactive oxygen species (ROS) modulator, antitumor immunity, and anti-apoptotic processes. Previous studies have shown that Lf is abnormally expressed in a variety of neurological diseases, especially neurodegenerative diseases. Recently, the promotion of neurodevelopment and neuroprotection by Lf has attracted widespread attention, and Lf could be exploited both as an active therapeutic agent and drug nanocarrier. However, our understanding of the roles of Lf proteins in the initiation or progression of CNS diseases is limited, especially the roles of Lf in regulating neurogenesis. This review highlights recent advances in the understanding of the major pharmacological effects of Lf in CNS diseases, including neurodegenerative diseases, cerebrovascular disease, developmental delays in children, and brain tumors.

2020 ◽  
Vol 31 (7) ◽  
pp. 743-756
Author(s):  
Ge Wang ◽  
Yong Wang ◽  
Ningyuan Liu ◽  
Mujun Liu

AbstractCentral nervous system (CNS) diseases are common diseases that threaten human health. The CNS is highly enriched in lipids, which play important roles in maintaining normal physiological functions of the nervous system. Moreover, many CNS diseases are closely associated with abnormal lipid metabolism. Exosomes are a subtype of extracellular vesicles (EVs) secreted from multivesicular bodies (MVBs) . Through novel forms of intercellular communication, exosomes secreted by brain cells can mediate inter-neuronal signaling and play important roles in the pathogenesis of CNS diseases. Lipids are essential components of exosomes, with cholesterol and sphingolipid as representative constituents of its bilayer membrane. In the CNS, lipids are closely related to the formation and function of exosomes. Their dysregulation causes abnormalities in exosomes, which may, in turn, lead to dysfunctions in inter-neuronal communication and promote diseases. Therefore, the role of lipids in the treatment of neurological diseases through exosomes has received increasing attention. The aim of this review is to discuss the relationship between lipids and exosomes and their roles in CNS diseases.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1168
Author(s):  
Deokho Lee ◽  
Yohei Tomita ◽  
William Allen ◽  
Kazuo Tsubota ◽  
Kazuno Negishi ◽  
...  

The burden of neurodegenerative diseases in the central nervous system (CNS) is increasing globally. There are various risk factors for the development and progression of CNS diseases, such as inflammatory responses and metabolic derangements. Thus, curing CNS diseases requires the modulation of damaging signaling pathways through a multitude of mechanisms. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors (PPARα, PPARβ/δ, and PPARγ), and they work as master sensors and modulators of cellular metabolism. In this regard, PPARs have recently been suggested as promising therapeutic targets for suppressing the development of CNS diseases and their progressions. While the therapeutic role of PPARγ modulation in CNS diseases has been well reviewed, the role of PPARα modulation in these diseases has not been comprehensively summarized. The current review focuses on the therapeutic roles of PPARα modulation in CNS diseases, including those affecting the brain, spinal cord, and eye, with recent advances. Our review will enable more comprehensive therapeutic approaches to modulate PPARα for the prevention of and protection from various CNS diseases.


Nano LIFE ◽  
2020 ◽  
Vol 10 (01n02) ◽  
pp. 2040007 ◽  
Author(s):  
Ying-ying Huang ◽  
Yu-qi Wang ◽  
Yi-ming Gao ◽  
Qing-zhuo Liu ◽  
Fang-fei Ye ◽  
...  

Brain-derived neurotrophic factor (BDNF), a crucial member of the neurotrophic family, is most widely distributed and extensively studied in the mammalian central nervous system. Accumulating evidence from animal and human studies indicates that BDNF plays critical roles in regulating neurogenesis, synaptogenesis and plasticity, and neurological diseases. In this review, we summarize the synthesis and general signaling pathway of BDNF and review its pivotal roles in neurogenesis and the maintenance of axon and dendrites, synaptic transmission and plasticity, which are thought to be the cellular basis for learning and memory, and certain neurological diseases, including Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Future studies should focus on understanding the multifunctional roles of BDNF in different brain regions and tightly controlled clinical studies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jéssica Silva dos Santos ◽  
João Pedro Gonçalves Cirino ◽  
Patrícia de Oliveira Carvalho ◽  
Manoela Marques Ortega

Kaempferol (KPF) is a flavonoid antioxidant found in fruits and vegetables. Many studies have described the beneficial effects of dietary KPF in reducing the risk of chronic diseases, especially cancer. Nevertheless, little is known about the cellular and molecular mechanisms underlying KPF actions in the central nervous system (CNS). Also, the relationship between KPF structural properties and their glycosylation and the biological benefits of these compounds is unclear. The aim of this study was to review studies published in the PubMed database during the last 10 years (2010–2020), considering only experimental articles that addressed the isolated cell effect of KPF (C15H10O6) and its derivatives in neurological diseases such as Alzheimer's disease, Parkinson, ischemia stroke, epilepsy, major depressive disorder, anxiety disorders, neuropathic pain, and glioblastoma. 27 publications were included in the present review, which presented recent advances in the effects of KPF on the nervous system. KPF has presented a multipotential neuroprotective action through the modulation of several proinflammatory signaling pathways such as the nuclear factor kappa B (NF-kB), p38 mitogen-activated protein kinases (p38MAPK), serine/threonine kinase (AKT), and β-catenin cascade. In addition, there are different biological benefits and pharmacokinetic behaviors between KPF aglycone and its glycosides. The antioxidant nature of KPF was observed in all neurological diseases through MMP2, MMP3, and MMP9 metalloproteinase inhibition; reactive oxygen species generation inhibition; endogenous antioxidants modulation as superoxide dismutase and glutathione; formation and aggregation of beta-amyloid (β-A) protein inhibition; and brain protective action through the modulation of brain-derived neurotrophic factor (BDNF), important for neural plasticity. In conclusion, we suggest that KPF and some glycosylated derivatives (KPF-3-O-rhamnoside, KPF-3-O-glucoside, KPF-7-O-rutinoside, and KPF-4′-methyl ether) have a multipotential neuroprotective action in CNS diseases, and further studies may make the KPF effect mechanisms in those pathologies clearer. Future in vivo studies are needed to clarify the mechanism of KPF action in CNS diseases as well as the impact of glycosylation on KPF bioactivity.


Author(s):  
Konstantin Gulyabin

Mills' syndrome is a rare neurological disorder. Its nosological nature is currently not completely determined. Nevertheless, Mills' syndrome is considered to be a rare variant of the degenerative pathology of the central nervous system – a variant of focal cortical atrophy. The true prevalence of this pathology is unknown, since this condition is more often of a syndrome type, observed in the clinical picture of a number of neurological diseases (primary lateral sclerosis, frontotemporal dementia, etc.) and is less common in isolated form.


Author(s):  
Mio Sakai ◽  
Masahiro Higashi ◽  
Takuya Fujiwara ◽  
Tomoko Uehira ◽  
Takuma Shirasaka ◽  
...  

AbstractWith the advent of antiretroviral therapy (ART), the prognosis of people infected with human immunodeficiency virus (HIV) has improved, and the frequency of HIV-related central nervous system (CNS) diseases has decreased. Nevertheless, mortality from HIV-related CNS diseases, including those associated with ART (e.g., immune reconstitution inflammatory syndrome) remains significant. Magnetic resonance imaging (MRI) can improve the outlook for people with HIV through early diagnosis and prompt treatment. For example, HIV encephalopathy shows a diffuse bilateral pattern, whereas progressive multifocal leukoencephalopathy, HIV-related primary CNS lymphoma, and CNS toxoplasmosis show focal patterns on MRI. Among the other diseases caused by opportunistic infections, CNS cryptococcosis and CNS tuberculosis have extremely poor prognoses unless diagnosed early. Immune reconstitution inflammatory syndrome shows distinct MRI findings from the offending opportunistic infections. Although distinguishing between HIV-related CNS diseases based on imaging alone is difficult, in this review, we discuss how pattern recognition approaches can contribute to their early differentiation.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3196 ◽  
Author(s):  
Mi Kim ◽  
Inae Jung ◽  
Ju Na ◽  
Yujeong Lee ◽  
Jaewon Lee ◽  
...  

We previously isolated pseudane-VII from the secondary metabolites of Pseudoalteromonas sp. M2 in marine water, and demonstrated its anti-inflammatory efficacy on macrophages. However, the molecular mechanism by which pseudane-VII suppresses neuroinflammation has not yet been elucidated in brain microglia. Microglia is activated by immunological stimulation or brain injury. Activated microglia secrete proinflammatory mediators which damage neurons. Neuroinflammation appears to be associated with certain neurological diseases, including Parkinson’s disease and Alzheimer’s disease. Natural compounds that suppress microglial inflammatory responses could potentially be used to prevent neurodegenerative diseases or slow their progression. In the present study, we found that pseudane-VII suppresses neuroinflammation in lipopolysaccaride (LPS)-stimulated BV-2 microglial cells and brain. Pseudane-VII was shown to inhibit the LPS-stimulated NO, ROS production and the expression of iNOS and COX-2. To identify the signaling pathway targeted by pseudane-VII, we used western blot analysis to assess the LPS-induced phosphorylation state of p38, ERK1/2, JNK1/2, and nuclear factor-kappaB (NF-κB). We found that pseudane-VII attenuated LPS-induced phosphorylation of MAPK and NF-κB. Moreover, administration of pseudane-VII in mice significantly reduced LPS-induced iNOS expression and microglia activation in brain. Taken together, our findings suggest that pseudane-VII may represent a potential novel target for treatment for neurodegenerative diseases.


2021 ◽  
Author(s):  
Patrick A. Lewis

Abstract Cellular control of vesicle biology and trafficking is critical for cell viability, with disruption of these pathways within the cells of the central nervous system resulting in neurodegeneration and disease. The past two decades have provided important insights into both the genetic and biological links between vesicle trafficking and neurodegeneration. In this essay, the pathways that have emerged as being critical for neuronal survival in the human brain will be discussed – illustrating the diversity of proteins and cellular events with three molecular case studies drawn from different neurological diseases.


2021 ◽  
Vol 13 ◽  
Author(s):  
Banglian Hu ◽  
Shengshun Duan ◽  
Ziwei Wang ◽  
Xin Li ◽  
Yuhang Zhou ◽  
...  

The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yang Tian ◽  
Chen Fu ◽  
Yifan Wu ◽  
Yao Lu ◽  
Xuemei Liu ◽  
...  

Exosomes are a type of extracellular vesicles secreted by almost all kinds of mammalian cells that shuttle “cargo” from one cell to another, indicative of its role in cell-to-cell transportation. Interestingly, exosomes are known to undergo alterations or serve as a pathway in multiple diseases, including neurodegenerative diseases. In the central nervous system (CNS), exosomes originating from neurons or glia cells contribute to or inhibit the progression of CNS-related diseases in special ways. In lieu of this, the current study investigated the effect of CNS cell-derived exosomes on different neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document