scholarly journals Functional Roles of Matrix Metalloproteinases and Their Inhibitors in Melanoma

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1151 ◽  
Author(s):  
Salvatore Napoli ◽  
Chiara Scuderi ◽  
Giuseppe Gattuso ◽  
Virginia Di Bella ◽  
Saverio Candido ◽  
...  

The extracellular matrix (ECM) plays an important role in the regulation of the tissue microenvironment and in the maintenance of cellular homeostasis. Several proteins with a proteolytic activity toward several ECM components are involved in the regulation and remodeling of the ECM. Among these, Matrix Metalloproteinases (MMPs) are a class of peptidase able to remodel the ECM by favoring the tumor invasive processes. Of these peptidases, MMP-9 is the most involved in the development of cancer, including that of melanoma. Dysregulations of the MAPKs and PI3K/Akt signaling pathways can lead to an aberrant overexpression of MMP-9. Even ncRNAs are implicated in the aberrant production of MMP-9 protein, as well as other proteins responsible for the activation or inhibition of MMP-9, such as Osteopontin and Tissue Inhibitors of Metalloproteinases. Currently, there are different therapeutic approaches for melanoma, including targeted therapies and immunotherapies. However, no biomarkers are available for the prediction of the therapeutic response. In this context, several studies have tried to understand the diagnostic, prognostic and therapeutic potential of MMP-9 in melanoma patients by performing clinical trials with synthetic MMPs inhibitors. Therefore, MMP-9 may be considered a promising molecule for the management of melanoma patients due to its role as a biomarker and therapeutic target.

2021 ◽  
Vol 12 ◽  
Author(s):  
Edwin Leong ◽  
Michael Bezuhly ◽  
Jean S. Marshall

Systemic sclerosis (SSc) is a chronic debilitating idiopathic disorder, characterized by deposition of excessive extracellular matrix (ECM) proteins such as collagen which leads to fibrosis of the skin and other internal organs. During normal tissue repair and remodeling, the accumulation and turnover of ECM proteins are tightly regulated by the interaction of matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of metalloproteinases (TIMPs). SSc is associated with dysregulation of the activity of these proteolytic and inhibitory proteins within the tissue microenvironment, tipping the balance toward fibrosis. The resultant ECM accumulation further perpetuates tissue stiffness and decreased function, contributing to poor clinical outcomes. Understanding the expression and function of these endogenous enzymes and inhibitors within specific tissues is therefore critical to the development of therapies for SSc. This brief review describes recent advances in our understanding of the functions and mechanisms of ECM remodeling by metalloproteinases and their inhibitors in the skin and lungs affected in SSc. It highlights recent progress on potential candidates for intervention and therapeutic approaches for treating SSc fibrosis.


2019 ◽  
Vol 11 ◽  
pp. 175883591983082 ◽  
Author(s):  
Meredith S. Pelster ◽  
Rodabe N. Amaria

The development of BRAF and MEK inhibitors (BRAFis and MEKis) and immune checkpoint inhibitors have changed the management of advanced stage melanoma and improved the outcomes of patients with this malignancy. However, both therapeutic approaches have limitations, including a limited duration of benefit in subsets of BRAF-mutant melanoma patients treated with targeted therapy and a lower overall response rate without a clear predictive biomarker in patients treated with checkpoint inhibitors. Preclinical and translational data have shown that BRAFis and MEKis alter the tumor microenvironment to make it more amenable to immunotherapy and have provided the scientific rationale for combing BRAFis and MEKis with immunotherapy. In this review, the initial studies demonstrating the impact of BRAFis and MEKis on the expression of melanoma differentiation antigens, T-cell infiltration, and the balance of immune stimulatory and immune suppressive cells and cytokines are addressed. Preclinical work on the combination of targeted therapy with BRAFis and MEKis with immunotherapy are reviewed, highlighting improved tumor responses in mouse models of BRAF-mutated melanoma treated with combinatorial strategies. Lastly, data from early clinical trials of combined targeted therapy and immunotherapy are discussed, focusing on response rates and toxicities.


2018 ◽  
Vol 25 (15) ◽  
pp. 1805-1816 ◽  
Author(s):  
Shifa Narula ◽  
Chanderdeep Tandon ◽  
Simran Tandon

Matrix metalloproteinases (MMPs) are members of calcium dependent-zinc containing endopeptidases that play a pivotal role in extracellular matrix (ECM) remodeling. MMPs are also known to cleave non-matrix proteins, including cell surface receptors, TNF-α, angiotensin-II, growth factors, (especially transforming growth factor-β1, ΤGF- β1) plasminogen, endothelin and other bioactive molecules. The tissue inhibitors of metalloproteinases (TIMPs) inhibit the activity of MMPs and decrease ECM degradation. Various patho-physiological conditions have been linked with the imbalance of ECM synthesis and degradation. Numerous studies have reported the significance of MMPs and TIMPs in the progression of kidney pathologies, including glomerulonephritis, diabetic nephropathy, renal cancer, and nephrolithiasis. Although dysregulated activity of MMPs could directly or indirectly lead to pathological morbidities, their contribution in disease progression is still understated. Specifically, MMP activity in the kidneys and it's relation to kidney diseases has been the subject of a limited number of investigations. Therefore, the aim of the present review is to provide an updated insight of the involvement of MMPs and TIMPs in the pathogenesis of inflammatory and degenerative kidney disorders.


Author(s):  
Md. Junaid ◽  
Yeasmin Akter ◽  
Syeda Samira Afrose ◽  
Mousumi Tania ◽  
Md. Asaduzzaman Khan

Background: AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to the carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. Objective: In this review article, we have interpreted the role of AKT signaling pathways in cancer and natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanism. Method: We have collected the updated information and data on AKT, their role in cancer and inhibitory effect of TQ in AKT signaling pathway from google scholar, PubMed, Web of Science, Elsevier, Scopus and many more. Results: There are many drugs already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. Conclusion: This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ’s future as a cancer therapeutic drug.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


Author(s):  
Zuzana Strizova ◽  
Jitka Smetanova ◽  
Jirina Bartunkova ◽  
Tomas Milota

The number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients keeps rising in most of the European countries despite the pandemic precaution measures. The current antiviral and anti-inflammatory therapeutic approaches are only supportive, have limited efficacy, and the prevention in reducing the transmission of SARS-CoV-2 virus is the best hope for public health. It is presumed that an effective vaccination against SARS-CoV-2 infection could mobilize the innate and adaptive immune responses and provide a protection against severe forms of coronavirus disease 2019 (COVID-19) disease. As the race for the effective and safe vaccine has begun, different strategies were introduced. To date, viral vector-based vaccines, genetic vaccines, attenuated vaccines, and protein-based vaccines are the major vaccine types tested in the clinical trials. Over 80 clinical trials have been initiated; however, only 18 vaccines have reached the clinical phase II/III or III, and 4 vaccine candidates are under consideration or have been approved for the use so far. In addition, the protective effect of the off-target vaccines, such as <i>Bacillus</i> Calmette-Guérin and measles vaccine, is being explored in randomized prospective clinical trials with SARS-CoV-2-infected patients. In this review, we discuss the most promising anti-COVID-19 vaccine clinical trials and different vaccination strategies in order to provide more clarity into the ongoing clinical trials.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3622
Author(s):  
Jonathan Barra ◽  
Javier Cerda-Infante ◽  
Lisette Sandoval ◽  
Patricia Gajardo-Meneses ◽  
Jenny F. Henriquez ◽  
...  

Cancer therapy may be improved by the simultaneous interference of two or more oncogenic pathways contributing to tumor progression and aggressiveness, such as EGFR and p53. Tumor cells expressing gain-of-function (GOF) mutants of p53 (mutp53) are usually resistant to EGFR inhibitors and display invasive migration and AKT-mediated survival associated with enhanced EGFR recycling. D-Propranolol (D-Prop), the non-beta blocker enantiomer of propranolol, was previously shown to induce EGFR internalization through a PKA inhibitory pathway that blocks the recycling of the receptor. Here, we first show that D-Prop decreases the levels of EGFR at the surface of GOF mutp53 cells, relocating the receptor towards recycling endosomes, both in the absence of ligand and during stimulation with high concentrations of EGF or TGF-α. D-Prop also inactivates AKT signaling and reduces the invasive migration and viability of these mutp53 cells. Unexpectedly, mutp53 protein, which is stabilized by interaction with the chaperone HSP90 and mediates cell oncogenic addiction, becomes destabilized after D-Prop treatment. HSP90 phosphorylation by PKA and its interaction with mutp53 are decreased by D-Prop, releasing mutp53 towards proteasomal degradation. Furthermore, a single daily dose of D-Prop reproduces most of these effects in xenografts of aggressive gallbladder cancerous G-415 cells expressing GOF R282W mutp53, resulting in reduced tumor growth and extended mice survival. D-Prop then emerges as an old drug endowed with a novel therapeutic potential against EGFR- and mutp53-driven tumor traits that are common to a large variety of cancers.


2021 ◽  
Vol 10 (4) ◽  
pp. 711
Author(s):  
Byung-Chul Lee ◽  
Insung Kang ◽  
Kyung-Rok Yu

Identification of the immunomodulatory and regenerative properties of mesenchymal stem cells (MSCs) have made them an attractive alternative therapeutic option for diseases with no effective treatment options. Numerous clinical trials have followed; however, issues such as infusional toxicity and cellular rejection have been reported. To address these problems associated with cell-based therapy, MSC exosome therapy was developed and has shown promising clinical outcomes. MSC exosomes are nanosized vesicles secreted from MSCs and represent a non-cellular therapeutic agent. MSC exosomes retain therapeutic features of the cells from which they originated including genetic material, lipids, and proteins. Similar to MSCs, exosomes can induce cell differentiation, immunoregulation, angiogenesis, and tumor suppression. MSC exosomes have therefore been employed in several experimental models and clinical studies. Here, we review the therapeutic potential of MSC-derived exosomes and summarize currently ongoing clinical trials according to disease type. In addition, we propose several functional enhancement strategies for the effective clinical application of MSC exosome therapy.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2618
Author(s):  
Tatyana A. Kuznetsova ◽  
Boris G. Andryukov ◽  
Ilona D. Makarenkova ◽  
Tatyana S. Zaporozhets ◽  
Natalya N. Besednova ◽  
...  

Hemostasis disorders play an important role in the pathogenesis, clinical manifestations, and outcome of COVID-19. First of all, the hemostasis system suffers due to a complicated and severe course of COVID-19. A significant number of COVID-19 patients develop signs of hypercoagulability, thrombocytopenia, and hyperfibrinolysis. Patients with severe COVID-19 have a tendency toward thrombotic complications in the venous and arterial systems, which is the leading cause of death in this disease. Despite the success achieved in the treatment of SARS-CoV-2, the search for new effective anticoagulants, thrombolytics, and fibrinolytics, as well as their optimal dose strategies, continues to be relevant. The wide therapeutic potential of seaweed sulfated polysaccharides (PSs), including anticoagulant, thrombolytic, and fibrinolytic activities, opens up new possibilities for their study in experimental and clinical trials. These natural compounds can be important complementary drugs for the recovery from hemostasis disorders due to their natural origin, safety, and low cost compared to synthetic drugs. In this review, the authors analyze possible pathophysiological mechanisms involved in the hemostasis disorders observed in the pathological progression of COVID-19, and also focus the attention of researchers on seaweed PSs as potential drugs aimed to correction these disorders in COVID-19 patients. Modern literature data on the anticoagulant, antithrombotic, and fibrinolytic activities of seaweed PSs are presented, depending on their structural features (content and position of sulfate groups on the main chain of PSs, molecular weight, monosaccharide composition and type of glycosidic bonds, the degree of PS chain branching, etc.). The mechanisms of PS action on the hemostasis system and the issues of oral bioavailability of PSs, important for their clinical use as oral anticoagulant and antithrombotic agents, are considered. The combination of the anticoagulant, thrombolytic, and fibrinolytic properties, along with low toxicity and relative cheapness of production, open up prospects for the clinical use of PSs as alternative sources of new anticoagulant and antithrombotic compounds. However, further investigation and clinical trials are needed to confirm their efficacy.


Sign in / Sign up

Export Citation Format

Share Document