scholarly journals IGFBP-3/IGFBP-3 Receptor System as an Anti-Tumor and Anti-Metastatic Signaling in Cancer

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1261 ◽  
Author(s):  
Qing Cai ◽  
Mikhail Dozmorov ◽  
Youngman Oh

Insulin-like growth factor binding protein-3 (IGFBP-3) is a p53 tumor suppressor-regulated protein and a major carrier for IGFs in circulation. Among six high-affinity IGFBPs, which are IGFBP-1 through 6, IGFBP-3 is the most extensively investigated IGFBP species with respect to its IGF/IGF-I receptor (IGF-IR)-independent biological actions beyond its endocrine/paracrine/autocrine role in modulating IGF action in cancer. Disruption of IGFBP-3 at transcriptional and post-translational levels has been implicated in the pathophysiology of many different types of cancer including breast, prostate, and lung cancer. Over the past two decades, a wealth of evidence has revealed both tumor suppressing and tumor promoting effects of IGF/IGF-IR-independent actions of IGFBP-3 depending upon cell types, post-translational modifications, and assay methods. However, IGFBP-3′s anti-tumor function has been well accepted due to identification of functional IGFBP-3-interacting proteins, putative receptors, or crosstalk with other signaling cascades. This review mainly focuses on transmembrane protein 219 (TMEM219), which represents a novel IGFBP-3 receptor mediating antitumor effect of IGFBP-3. Furthermore, this review delineates the potential underlying mechanisms involved and the subsequent biological significance, emphasizing the clinical significance of the IGFBP-3/TMEM219 axis in assessing both the diagnosis and the prognosis of cancer as well as the therapeutic potential of TMEM219 agonists for cancer treatment.

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 968
Author(s):  
Yousra Hamdan ◽  
Loubna Mazini ◽  
Gabriel Malka

Exosomes are the main actors of intercellular communications and have gained great interest in the new cell-free regenerative medicine. These nanoparticles are secreted by almost all cell types and contain lipids, cytokines, growth factors, messenger RNA, and different non-coding RNA, especially micro-RNAs (mi-RNAs). Exosomes’ cargo is released in the neighboring microenvironment but is also expected to act on distant tissues or organs. Different biological processes such as cell development, growth and repair, senescence, migration, immunomodulation, and aging, among others, are mediated by exosomes and principally exosome-derived mi-RNAs. Moreover, their therapeutic potential has been proved and reinforced by their use as biomarkers for disease diagnostics and progression. Evidence has increasingly shown that exosome-derived mi-RNAs are key regulators of age-related diseases, and their involvement in longevity is becoming a promising issue. For instance, mi-RNAs such as mi-RNA-21, mi-RNA-29, and mi-RNA-34 modulate tissue functionality and regeneration by targeting different tissues and involving different pathways but might also interfere with long life expectancy. Human mi-RNAs profiling is effectively related to the biological fluids that are reported differently between young and old individuals. However, their underlying mechanisms modulating cell senescence and aging are still not fully understood, and little was reported on the involvement of mi-RNAs in cell or tissue longevity. In this review, we summarize exosome biogenesis and mi-RNA synthesis and loading mechanism into exosomes’ cargo. Additionally, we highlight the molecular mechanisms of exosomes and exosome-derived mi-RNA regulation in the different aging processes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenyu Wu ◽  
Patrick Li ◽  
Yuzi Tian ◽  
Wenlu Ouyang ◽  
Jessie Wai-Yan Ho ◽  
...  

Peptidylarginine deiminases (PADs) are a group of enzymes that catalyze post-translational modifications of proteins by converting arginine residues into citrullines. Among the five members of the PAD family, PAD2 and PAD4 are the most frequently studied because of their abundant expression in immune cells. An increasing number of studies have identified PAD2 as an essential factor in the pathogenesis of many diseases. The successes of preclinical research targeting PAD2 highlights the therapeutic potential of PAD2 inhibition, particularly in sepsis and autoimmune diseases. However, the underlying mechanisms by which PAD2 mediates host immunity remain largely unknown. In this review, we will discuss the role of PAD2 in different types of cell death signaling pathways and the related immune disorders contrasted with functions of PAD4, providing novel therapeutic strategies for PAD2-associated pathology.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Gui-Bin Gao ◽  
Yue Sun ◽  
Run-Dong Fang ◽  
Ying Wang ◽  
Yang Wang ◽  
...  

AbstractPost-translational modifications (PTMs) of Cyclin-dependent kinase 5 (CDK5) have emerged as important regulatory mechanisms that modulate cancer development in patients. Though CDK5 is an atypical member of the cyclin-dependent kinase family, its aberrant expression links to cell proliferation, DNA damage response, apoptosis, migration and angiogenesis in cancer. Current studies suggested that, new PTMs on CDK5, including S-nitrosylation, sumoylation, and acetylation, serve as molecular switches to control the kinase activity of CDK5 in the cell. However, a majority of these modifications and their biological significance in cancer remain uncharacterized. In this review, we discussed the role of PTMs on CDK5-mediated signaling cascade, and their possible mechanisms of action in malignant tumors, as well as the challenges and future perspectives in this field. On the basis of the newly identified regulatory signaling pathways of CDK5 related to PTMs, researchers have investigated the cancer therapeutic potential of chemical compounds, small-molecule inhibitors, and competitive peptides by targeting CDK5 and its PTMs. Results of these preclinical studies demonstrated that targeting PTMs of CDK5 yields promising antitumor effects and that clinical translation of these therapeutic strategies is warranted.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2020 ◽  
Vol 15 (3) ◽  
pp. 219-232
Author(s):  
Ifrah Anwar ◽  
Usman A. Ashfaq ◽  
Zeeshan Shokat

The liver is a vital organ for life and the only internal organ that is capable of natural regeneration. Although the liver has high regeneration capacity, excessive hepatocyte death can lead to liver failure. Various factors can lead to liver damage including drug abuse, some natural products, alcohol, hepatitis, and autoimmunity. Some models for studying liver injury are APAP-based model, Fas ligand (FasL), D-galactosamine/endotoxin (Gal/ET), Concanavalin A, and carbon tetrachloride-based models. The regeneration of the liver can be carried out using umbilical cord blood stem cells which have various advantages over other stem cell types used in liver transplantation. UCB-derived stem cells lack tumorigenicity, have karyotype stability and high immunomodulatory, low risk of graft versus host disease (GVHD), low risk of transmitting somatic mutations or viral infections, and low immunogenicity. They are readily available and their collection is safe and painless. This review focuses on recent development and modern trends in the use of umbilical cord stem cells for the regeneration of liver fibrosis.


2021 ◽  
Vol 22 (8) ◽  
pp. 4167
Author(s):  
Xiaonan Sun ◽  
Jalen Alford ◽  
Hongyu Qiu

Mitochondria undergo structural and functional remodeling to meet the cell demand in response to the intracellular and extracellular stimulations, playing an essential role in maintaining normal cellular function. Merging evidence demonstrated that dysregulation of mitochondrial remodeling is a fundamental driving force of complex human diseases, highlighting its crucial pathophysiological roles and therapeutic potential. In this review, we outlined the progress of the molecular basis of mitochondrial structural and functional remodeling and their regulatory network. In particular, we summarized the latest evidence of the fundamental association of impaired mitochondrial remodeling in developing diverse cardiac diseases and the underlying mechanisms. We also explored the therapeutic potential related to mitochondrial remodeling and future research direction. This updated information would improve our knowledge of mitochondrial biology and cardiac diseases’ pathogenesis, which would inspire new potential strategies for treating these diseases by targeting mitochondria remodeling.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 355
Author(s):  
Guilhem Lalle ◽  
Julie Twardowski ◽  
Yenkel Grinberg-Bleyer

The emergence of immunotherapies has definitely proven the tight relationship between malignant and immune cells, its impact on cancer outcome and its therapeutic potential. In this context, it is undoubtedly critical to decipher the transcriptional regulation of these complex interactions. Following early observations demonstrating the roles of NF-κB in cancer initiation and progression, a series of studies converge to establish NF-κB as a master regulator of immune responses to cancer. Importantly, NF-κB is a family of transcriptional activators and repressors that can act at different stages of cancer immunity. In this review, we provide an overview of the selective cell-intrinsic contributions of NF-κB to the distinct cell types that compose the tumor immune environment. We also propose a new view of NF-κB targeting drugs as a new class of immunotherapies for cancer.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 309
Author(s):  
Lijing Yang ◽  
Mengjia Hu ◽  
Yukai Lu ◽  
Songling Han ◽  
Junping Wang

Hematopoietic stem cells (HSCs) regularly produce various blood cells throughout life via their self-renewal, proliferation, and differentiation abilities. Most HSCs remain quiescent in the bone marrow (BM) and respond in a timely manner to either physiological or pathological cues, but the underlying mechanisms remain to be further elucidated. In the past few years, accumulating evidence has highlighted an intermediate role of inflammasome activation in hematopoietic maintenance, post-hematopoietic transplantation complications, and senescence. As a cytosolic protein complex, the inflammasome participates in immune responses by generating a caspase cascade and inducing cytokine secretion. This process is generally triggered by signals from purinergic receptors that integrate extracellular stimuli such as the metabolic factor ATP via P2 receptors. Furthermore, targeted modulation/inhibition of specific inflammasomes may help to maintain/restore adequate hematopoietic homeostasis. In this review, we will first summarize the possible relationships between inflammasome activation and homeostasis based on certain interesting phenomena. The cellular and molecular mechanism by which purinergic receptors integrate extracellular cues to activate inflammasomes inside HSCs will then be described. We will also discuss the therapeutic potential of targeting inflammasomes and their components in some diseases through pharmacological or genetic strategies.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3389
Author(s):  
Ishtiaq Ahmed ◽  
Saif Ur Rehman ◽  
Shiva Shahmohamadnejad ◽  
Muhammad Anjum Zia ◽  
Muhammad Ahmad ◽  
...  

In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer—both in vivo and in vitro clinical trials—has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Catarina Dias ◽  
Jesper Nylandsted

AbstractMaintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.


Sign in / Sign up

Export Citation Format

Share Document