scholarly journals Effect of HfO2-Based Multi-Dielectrics on Electrical Properties of Amorphous In-Ga-Zn-O Thin Film Transistors

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1381
Author(s):  
Ruozheng Wang ◽  
Qiang Wei ◽  
Jie Li ◽  
Jiao Fu ◽  
Yiwei Liu ◽  
...  

We report the fabrication of bottom gate a-IGZO TFTs based on HfO2 stacked dielectrics with decent electrical characteristics and bias stability. The microscopic, electrical, and optical properties of room temperature deposited a-IGZO film with varied oxygen content were explored. In order to suppress the bulk defects in the HfO2 thin film and hence maximize the quality, surface modification of the SiNx film was investigated so as to achieve a more uniform layer. The root mean square (RMS) roughness of SiNx/HfO2/SiNx (SHS) stacked dielectrics was only 0.66 nm, which was reduced by 35% compared with HfO2 single film (1.04 nm). The basic electrical characteristics of SHS-based a-IGZO TFT were as follows: Vth is 2.4 V, μsat is 21.1 cm2 V−1 s−1, Ion/Ioff of 3.3 × 107, Ioff is 10−11 A, and SS is 0.22 V/dec. Zr-doped HfO2 could form a more stable surface, which will decrease the bulk defect states so that the stability of device can be improved. It was found that the electrical characteristics were improved after Zr doping, with a Vth of 1.4 V, Ion/Ioff of 108, μsat of 19.5 cm2 V−1 s−1, Ioff of 10−12 A, SS of 0.18 V/dec. After positive gate bias stress of 104 s, the ΔVth was decreased from 0.43 V (without Zr doping) to 0.09 V (with Zr doping), the ΔSS was decreased from 0.19 V/dec to 0.057 V/dec, respectively, which shows a meaningful impact to realize the long-term working stability of TFT devices.

2011 ◽  
Vol 26 (12) ◽  
pp. 125007 ◽  
Author(s):  
Ching-Lin Fan ◽  
Ping-Cheng Chiu ◽  
Yu-Zuo Lin ◽  
Tsung-Hsien Yang ◽  
Chin-Yuan Chiang

Author(s):  
А.Ш. Асваров ◽  
А.К. Ахмедов ◽  
А.Э. Муслимов ◽  
В.М. Каневский

Since to the stability of the functional properties of a transparent conducting three-layer structure ZnO:Ga/Ag/ZnO:Ga is important for practical application, we studied its long-term durability and thermal stability in air environment. It has been demonstrated that after prolonged interaction with the air environment at room temperature (~ 1000 h) and further heat treatment in air at temperatures up to 450 ° C (up to 10 h), the three-layer structure retains its integrity and is characterized by a low sheet resistance Rs = 2.8 Ω/sq at average transmittance in the visible range Tav of 82.1%.


2020 ◽  
Vol 30 (2) ◽  
pp. 234-241
Author(s):  
Lara Milevoj Kopcinovic ◽  
Marija Brcic ◽  
Jelena Culej ◽  
Marijana Miler ◽  
Nora Nikolac Gabaj ◽  
...  

Introduction: Our aim was to investigate the stability of clinically relevant analytes in pleural and peritoneal fluids stored in variable time periods and variable storage temperatures prior to analysis. Materials and methods: Baseline total proteins (TP), albumin (ALB), lactate dehydrogenase (LD), cholesterol (CHOL), triglycerides (TRIG), creatinine (CREA), urea, glucose and amylase (AMY) were measured using standard methods in residual samples from 29 pleural and 12 peritoneal fluids referred to our laboratory. Aliquots were stored for 6 hours at room temperature (RT); 3, 7, 14 and 30 days at - 20°C. At the end of each storage period, all analytes were re-measured. Deviations were calculated and compared to stability limits (SL). Results: Pleural fluid TP and CHOL did not differ in the observed storage periods (P = 0.265 and P = 0.170, respectively). Statistically significant differences were found for ALB, LD, TRIG, CREA, urea, glucose and AMY. Peritoneal fluid TP, ALB, TRIG, urea and AMY were not statistically different after storage, contrary to LD, CHOL, CREA and glucose. Deviations for TP, ALB, CHOL, TRIG, CREA, urea and AMY in all storage periods tested for both serous fluids were within the SL. Deviations exceeding SL were observed for LD and glucose when stored for 3 and 7 days at - 20°C, respectively. Conclusions: TP, ALB, CHOL, TRIG, CREA, urea and AMY are stable in serous samples stored up to 6 hours at RT and/or 30 days at - 20°C. Glucose is stable up to 6 hours at RT and 3 days at - 20°C. The stability of LD in is limited to 6 hours at RT.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Honglong Ning ◽  
Xuan Zeng ◽  
Hongke Zhang ◽  
Xu Zhang ◽  
Rihui Yao ◽  
...  

Flexible and fully transparent thin film transistors (TFT) were fabricated via room temperature processes. The fabricated TFT on the PEN exhibited excellent performance, including a saturation mobility (μsat) of 7.9 cm2/V·s, an Ion/Ioff ratio of 4.58 × 106, a subthreshold swing (SS) of 0.248 V/dec, a transparency of 87.8% at 550 nm, as well as relatively good stability under negative bias stress (NBS) and bending stress, which shows great potential in smart, portable flexible display, and wearable device applications.


2018 ◽  
Vol 29 (1) ◽  
pp. 94-111 ◽  
Author(s):  
Tomás Barranco ◽  
Asta Tvarijonaviciute ◽  
Damián Escribano ◽  
Fernando Tecles ◽  
José J Cerón ◽  
...  

Introduction: In this report, we aimed to examine the stability of various analytes in saliva under different storage conditions. Materials and methods: Alpha-amylase (AMY), cholinesterase (CHE), lipase (Lip), total esterase (TEA), creatine kinase (CK), aspartate aminotransferase (AST), lactate dehydrogenase (LD), lactate (Lact), adenosine deaminase (ADA), Trolox equivalent antioxidant capacity (TEAC), ferric reducing ability (FRAS), cupric reducing antioxidant capacity (CUPRAC), uric acid (UA), catalase (CAT), advanced oxidation protein products (AOPP) and hydrogen peroxide (H2O2) were colorimetrically measured in saliva obtained by passive drool from 12 healthy voluntary donors at baseline and after 3, 6, 24, 72 hours, 7 and 14 days at room temperature (RT) and 4 ºC, and after 14 days, 1, 3 and 6 months at – 20 ºC and – 80 ºC. Results: At RT, changes appeared at 6 hours for TEA and H2O2; 24 hours for Lip, CK, ADA and CUPRAC; and 72 hours for LD, Lact, FRAS, UA and AOPP. At 4 ºC changes were observed after 6 hours for TEA and H2O2; 24 hours for Lip and CUPRAC; 72 hours for CK; and 7 days for LD, FRAS and UA. At – 20 ºC changes appeared after 14 days for AST, Lip, CK and LD; and 3 months for TEA and H2O2. At – 80 ºC observed changes were after 3 months for TEA and H2O2. Conclusions: In short-term storage, the analytes were more stable at 4 ºC than at room temperature, whereas in long-term storage they were more stable at - 80 ºC than at – 20 ºC.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1186
Author(s):  
Soo Cheol Kang ◽  
So Young Kim ◽  
Sang Kyung Lee ◽  
Kiyung Kim ◽  
Billal Allouche ◽  
...  

The electrical characteristics of Zinc oxide (ZnO) thin-film transistors are analyzed to apprehend the effects of oxygen vacancies after vacuum treatment. The energy level of the oxygen vacancies was found to be located near the conduction band of ZnO, which contributed to the increase in drain current (ID) via trap-assisted tunneling when the gate voltage (VG) is lower than the specific voltage associated with the trap level. The oxygen vacancies were successfully passivated after the annealing of ZnO in oxygen ambient. We determined that the trap-induced Schottky barrier lowering reduced a drain barrier when the drain was subjected to negative bias stress. Consequentially, the field effect mobility increased from 8.5 m2 V−1·s−1 to 8.9 m2 V−1·s−1 and on-current increased by ~13%.


2019 ◽  
Vol 55 (3) ◽  
pp. 188-192
Author(s):  
M. L. Colsoul ◽  
A. Breuer ◽  
N. Goderniaux ◽  
J. D. Hecq ◽  
L. Soumoy ◽  
...  

Background and Objective: Infusion containing lorazepam is used by geriatric department to limit anxiety disorders in the elderly. Currently, these infusions are prepared according to demand by the nursing staff, but the preparation in advance in a centralized service could improve quality of preparation and time management. The aim of this study was to investigate the long-term stability of this infusion in polypropylene syringes stored at 5 ± 3°C. Then, results obtained were compared with stability data of lorazepam in syringes stored at room temperature, glass bottles at 5 ± 3°C, and glass bottles at room temperature. Method: Eight syringes and 6 bottles of infusion were prepared by diluting 1 mL lorazepam 4 mg in 23 mL of NaCl 0.9% under aseptic conditions. Five syringes and 3 bottles were stored at 5 ± 3°C and 3 syringes and 3 bottles were stored at room temperature for 30 days. During the storage period, particle appearance or color change were periodically checked by visual and microscope inspection. Turbidity was assessed by measurements of optical density (OD) at 3 wavelengths (350 nm, 410 nm, 550 nm). The stability of pH was also evaluated. The lorazepam concentrations were measured at each time point by high-performance liquid chromatography with ultraviolet detector at 220 nm. Results: Solutions were physically unstable in syringes at 5 ± 3°C after 4 days: crystals and a drop of OD at 350 nm were observed. However, pH was stable. After 2 days, solutions were considered as chemically unstable because a loss of lorazepam concentration higher than 10% was noticed: the lower 1-sided confidence limit at 95% was below 90% of the initial concentration. To assess temperature and polypropylene influence, results were compared with those obtained for syringes at room temperature and bottles at 5 ± 3°C and room temperature. Precipitation, drop of OD at 350 nm, and chemical instability were observed in all conditions. Conclusion: Solutions of lorazepam were unstable after 2 days in syringes at 5 ± 3°C. Preparation in advance appears, therefore, not possible for the clinical use. Storage conditions (temperature and form) do not improve the stability.


2013 ◽  
Vol 773 ◽  
pp. 660-663
Author(s):  
Li Qiang Guo ◽  
Zhao Jun Guo ◽  
Yuan Yuan Yang ◽  
Ju Mei Zhou

P-doped SiO2 were prepared by PECVD and one metal shadow mask self-assembled method was used for fabricating oxide thin film transistors gated by such proton conductors. Proton conduction of these films was demonstrated and electrical characteristics of oxide thin film transistors gated by such proton conductors were discussed. Due to excellent proton conduction and big capacitance density, oxide thin film transistors gated by such proton conductors have obtained excellent performances with mobility of 48.39 cm2/Vs, threshold voltage of-0.36 V, subthreshold swing of 0.13 V/decade, Ion/off ratio of 3.2×106 with the relative humidity of 30% at the room temperature.


Sign in / Sign up

Export Citation Format

Share Document