scholarly journals Cambial Activity and Phenology in Three Understory Species along an Altitude Gradient in Mexico

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 506
Author(s):  
Mayte S. Jiménez-Noriega ◽  
Lauro López-Mata ◽  
Teresa Terrazas

The aims of this study were to evaluate the cambial activity and phenology of three species with different life forms (Alchemilla procumbens, Acaena elongata and Ribes ciliatum) along an altitudinal gradient and to establish which environmental variables (light, soil humidity and temperature) had the greatest influence on cambial activity and phenological stages. Over two years, data on phenology, growth and cambium were gathered every four weeks in three to six sites per species in Sierra Nevada, Mexico. The results showed that Ribes is the only species that terminates cambial activity with leaves senescence and is influenced by the minimum soil temperature. The light environment influenced the vegetative stages in Alchemilla (cryptophyte), while in Acaena (hemicryptophyte), the mean soil temperature explained the findings related to leaf area during the dry season and growth along the gradient. In the three species, the reproductive phase dominated for a longer period at higher elevations, especially in Alchemilla. Only Ribes, the phanerophyte, showed a similar cambial activity to other trees and shrubs. Although cambium reactivates during the dry season, no xylogenesis occurs. The three species varied during the time in which vascular cambium was active, and this was dependent on the altitude. Specifically, the variation was more rhythmic in Ribes and switched on and off in Alchemilla. It is likely that, depending on the life form, vascular cambium may be more or less susceptible to one or more climate factors.

2006 ◽  
Vol 84 (3) ◽  
pp. 443-452 ◽  
Author(s):  
Nelson Ramírez

Pollination of a total of 155 plant species was evaluated monthly in relation to flowering phenology, habitats, and life forms in the Venezuelan Central Plain. The relationships between flowering phenology and pollinating agent classes and their abundance were evaluated. The total number of pollinating agent classes was significantly correlated with the number of plant species for habitats and life forms, and at the community level. The number of pollinating agent classes did not change statistically with respect to flowering phenology for life form, habitats, and overall community, but the number of pollinting agent classes increased from the dry season to the rainy season for overall community and habitats, except for forest. The abundance of pollinating agents was significantly affected by flowering time. A cluster analysis revealed that the abundance of pollinating agent classes differed throughout the year, separating the dry and rainy seasons. Two trends were found in the temporal pattern of the nine pollinating agents: (1) nonseasonal, in which flowering of bat- and bird-pollinated species did not change drastically throughout the year; and (2) seasonal, in which the number of bee-, butterfly-, fly-, wasp-, moth-, beetle-, and wind-pollinated species changed throughout the year, increasing from the dry to the rainy season at the community level. The number of pollinating bees, butterflies, flies, and wasps peaked during the dry season for trees and shrubs, and therefore for forest. The number of moth-pollinated species increased from the mid-dry season to the rainy season, with a peak during the dry–rainy transition period. Beetle- and wind-pollinated species are phenologically concentrated in the rainy season: beetle-pollinated species were mainly in the forest and forest–savanna transition, and wind-pollinated species were associated with herbaceous species in savanna and disturbed areas. The distribution of pollinating agents was affected by seasonality in habitats and life forms. Therefore, life form may be considered a proximate element, reducing interference in the pollination process at the community level.


2018 ◽  
Vol 30 (7) ◽  
pp. 1029
Author(s):  
Marcelo Ferreira ◽  
Aline Soldati ◽  
Sirlene S. S. Rodrigues ◽  
Laércio dos Anjos Benjamin

The insectivorous bat Myotis nigricans is widely distributed throughout the Neotropics, including Brazil, and has a reproductive biology that is affected by climate and food availability. To evaluate the reproductive capacity of this species, morphofunctional parameters of the testes were correlated with environmental variables and the body condition of individuals captured. After bats had been killed, their testes were removed, fixed in Karnovsky’s fluid for 24 h and embedded in resin for evaluation by light microscopy. The mean annual tubulosomatic index (0.58%) and the percentage of seminiferous tubules in the testes (88.96%) were the highest ever recorded for the Order Chiroptera. The percentage of Leydig cells and volume of the cytoplasm of Leydig cells were higher in the rainy than dry season (80.62 ± 3.19% and 573.57 ± 166.95 μm, respectively; mean ± s.d.). Conversely, the percentage of nuclei of the Leydig cells in the dry season (26.17 ± 3.70%; mean ± s.d.) and the total number of Leydig cells (6.38 ± 1.84 × 109; mean ± s.d.) were higher in the dry season. The results of the present study could help in future conservation of these bats because they provide a better understanding of the bats’ reproductive strategies and how the species can adapt to changes.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1059-1063
Author(s):  
Wei Guan ◽  
Tao Fan ◽  
Xiu Qin Zhu

To elucidate the relationship between stable isotopes of precipitation (SIP) and the extreme drought in Kunming area, based on the stable isotopes data of the GNIP in Kunming site from 1986 to 2003, the precipitation line equation is brought forward and the seasonal change rule of stable isotopes are discussed. The stable isotopic compositions of precipitation exhibit great diversities in different seasons during to influences of multiple factors, such as monsoon, rainfall amount moisture source and others. The δ18O values in rainwater exhibit significant seasonal variations, the average of-10.12‰ in rainy season, the dry season is-4.5‰, having lower values in the rainy season and higher one in the dry season. The amount effect of precipitation is very distinct, that concealed the temperature effect. Got the special geographical position,dvalues present unique characteristics, the average ofdvalues is 10.78‰ in rainy season, and is 4.86‰ in dry season, the mean value is generally lower than most parts of the world.


2021 ◽  
Vol 34 (4) ◽  
pp. 887-894
Author(s):  
GUSTAVO HADDAD SOUZA VIEIRA ◽  
ARILDO SEBASTIÃO SILVA ◽  
ARUN DILIPKUMAR JANI ◽  
LUSINERIO PREZOTTI ◽  
PAOLA ALFONSA VIEIRA LO MONACO

ABSTRACT This study aimed to determine how crop residue placement and composition would affect soil water content and temperature during the dry season in the central region of Espírito Santo state, Brazil. A 19-week field study was conducted from April to August 2017. A 2 x 4 factorial study with four replications was implemented using a randomized complete block design. Factors were soil management [conventional tillage (CT) and no soil disturbance (ND)] and residue amendment [maize (Zea mays L.), sunn hemp (Crotalaria juncea L.), a maize-sunn hemp mixture, and a no amendment control]. Soil water content and temperature were measured weekly at predetermined soil depth intervals. Soil water content was higher in ND plots amended with surface residues than under all other treatments in the 0 to 0.05 m depth range. All residue amendments in this range were equally effective in conserving soil water. Surface residues reduced soil temperature by up to 8.4 °C relative to the control in ND plots. Incorporating residue amendments by CT cancelled all temperature-moderating benefits provided by surface residues. These results indicate that surface residues from cereals, legumes, or cereal/legume mixtures are equally effective in conserving soil water and moderating soil temperature during the dry season. Additional research is needed to determine how improved soil environmental conditions, generated by surface residues, would affect nutrient acquisition and crop performance.


2021 ◽  
Vol 13 (10) ◽  
pp. 142
Author(s):  
Patrícia Conceição Medeiros ◽  
Yule Roberta Ferreira Nunes ◽  
Juliana Pimenta Cruz ◽  
Dayse Marcielle de Souza ◽  
Marly Antonielle Ávila ◽  
...  

Variations in the concentrations of plant secondary metabolites can occur due to the phenological stages of the plants, combined with environmental variations. Plants rich in tannins are used in folk medicine for different purposes. Xylopia emarginata Mart. (Anonaceae)-“Pindaíba” has been used to treat skin edema, bronchitis and malaria. We evaluated variations in condensed tannin (CTs) contents in relation to phenological variables in leaves of Xylopia emarginata during one year. The study took place in a Vereda in northern Minas Gerais State, Brazil. Monthly phenological observations as well as quantifications of the contents of condensed leaf tannins in ethanol and aqueous extracts were performed. The production of X. emarginata leaves occurred throughout the study, with greater budding and leaf fall in the dry season. Phenological observations were correlated with CT levels and climatic data of precipitation and temperature. There was a significant correlation (p < 0.05) between fruiting and CT levels in the extracts, which were higher during the dry season, 13.2% in the ethanol extract and 7.8% in the aqueous extract.


1969 ◽  
Vol 93 (3-4) ◽  
pp. 149-171
Author(s):  
Jorge L. Lugo-Camacho ◽  
Miguel A. Muñoz ◽  
Juan Pérez-Bolívar ◽  
Gregory R. Brannon

Soil temperature measurements from a climate monitoring network in Puerto Rico were evaluated and the difference between mean summer and mean winter soil temperature, known as isotivity value, was calculated. Air and soil temperature was collected from five weather stations of the USDA-Natural Resources Conservation Service from sea level to 1,019 m above sea level and from different soil moisture regimes. Isotivity values ranged from 1.2 to 3.9° C with an average of 2.6° C. The 750-m elevation was identified as the limit between the isohyperthermic and isothermic soil temperature regimes in the perudic soil moisture regime in Puerto Rico. The greatest differences between mean annual soil temperature and mean annual air temperature were observed at Guánica, Combate and Guilarte (2.1 ° C) stations. The smallest differences were observed at Maricao (0.8° C) and Isabela (1.8° C) stations. The study also indicated that the mean annual soil temperature in Puerto Rico can be estimated by adding 1.8° C to the mean annual air temperature or by the equation y = -0.007x + 28.0° C. The equation indicates that 97 percent of the time the behavior of the mean annual soil temperature is a function of elevation. According to the updated soil temperature regime boundaries, eight soil series were established in the Soil Survey of San Germán Area. In an area under the isothermic soil temperature regime, four soil series were classified as Oxisols (Haploperox), two soil series as Inceptisols (Eutrudepts) and two soil series as Mollisols (Argiudolls). This is the first field recognition of the Haploperox soil great group in the United States and its territories.


2021 ◽  
Vol 25 (5) ◽  
pp. 841-845
Author(s):  
C.A.E. Ibhadode ◽  
I.R. Ilaboya

Groundwater pollution by heavy metals such as lead, copper, nickel and iron is one of the major environmental issues of concern which has developed into a widely studied area. In this study, attempt was made to investigate the level of heavy metals in selected boreholes around the vicinity of cemeteries in Benin City. Seventy-two (72) samples of groundwater were taken from boreholes in 9 stations around the three cemeteries in Benin City on monthly basis. The samples were analysed for 7 heavy metals, in accordance with standard procedures. The heavy metals include; Zinc, Lead Iron, Copper, Cadmium, Nickel and Mercury. From the results of the study, a variation in the mean concentration of zinc was observed. The mean concentration of zinc in site 1 was 0.450mg/l, for site 2, it was 0.140mg/l and for site 3, it was 1.0533mg/l. For iron, mean concentration was 0.072mg/l in site 1. For site 2, mean concentration of iron was 2.140mg/l and for site 3, mean concentration of iron was 0.560mg/l. It was further revealed based on the results that mean value of heavy metals in groundwater around cemeteries in Benin City were generally lower during dry season compared to wet season. In addition, result of computed pollution index (Pi) revealed that the heavy metal with the highest potential to pollute groundwater is Cadmium, with Pi of 0.5333 and 0.400 representing dry season and wet season respectively.


2010 ◽  
Vol 10 (4) ◽  
pp. 205-213 ◽  
Author(s):  
Silvana Masciadri ◽  
Ernesto Brugnoli ◽  
Pablo Muniz

In Uruguay, as well as in other regions of the world, IAS cause negative impacts on natural and managed ecosystems. The use of databases is a helpful tool to elaborate different strategies for prevention and control, and to develop policies and scientific analyses related to IAS. The database of IAS in Uruguay (InBUy) was developed during two time periods (2006-2007 and 2009-2010). It currently contains information on 33 specialists of different taxonomic groups, 14 research projects, 185 references, 351 species and 4,715 records, with vascular plants having both the highest number of species and records. Among vascular plants, herbaceous life forms are the most strongly represented, followed by trees and shrubs. Within animals, the fishes and mollusks are the most important groups. Analysis of the native distribution areas of IAS showed that most are indigenous from Europe, followed by Asia and Oceania. Data showed that introductions of IAS into Uruguay are mainly intentional (67%), so efforts should be focused on policies and rules in order to control the entrance of exotic organisms and prevent new invasions. The geography of the compiled dataset shows the main impact is along the coastline, where the highest exotic species richness and records occurs, and also the most biological invasions. The InBUy database is up-to-date and has successfully contributed to the creation of an official IAS list for Uruguay and both a National and a Coastal Geographic Information System. It has also been used for developing consciousness about this important threat to biodiversity, at both national and regional scales.


2015 ◽  
Vol 5 (4) ◽  
pp. 1 ◽  
Author(s):  
Paul R. Hargreaves ◽  
Robert M. Rees ◽  
Graham W. Horgan ◽  
Bruce C. Ball

<p class="1Body">Nitrous oxide (N<sub>2</sub>O) emissions from agriculture contributed an estimated 60% of the global total in 2005. In the UK, grassland soils account for 30% of total emissions, 22% of which are estimated to come from urine and dung patches. These patches are possible sources of ‘hot-spots’ (area <em>ca.</em> 1 m<sup>2</sup>) of N<sub>2</sub>O fluxes. Spatial and temporal heterogeneity of N<sub>2</sub>O hot-spot fluxes were investigated in three grassland fields (grazed with dairy cows (DG), grazed with young stock (YG) or cut for silage (SC)) using gas sampling chambers surrounding historic hot-spots to establish their size. Fluxes from old dung and urine patches were measured, as well as freshly applied dung and urine to simulate the creation of hot-spots. Potential chemical and physical drivers were also measured. Large spatial variability of N<sub>2</sub>O fluxes was seen in all three grassland fields. Mean N<sub>2</sub>O fluxes for the historic hot-spots in the grazed fields (DG and YG) were significantly greater than (SC). The mean N<sub>2</sub>O fluxes in DG and YG (117.9 and 243.5 ng N m<sup>-2</sup> s<sup>-1</sup>) were 15 to 30% greater than for SC. Soil temperature (15 - 20 °C) was the most significant driver of N<sub>2</sub>O production with a 1°C rise in soil temperature increasing emissions under DG and YG. N<sub>2</sub>O fluxes were enhanced by the fresh dung but not by urine. However, in the urine treatment, the nutrient input increased the microbial respiration response for the CO<sub>2</sub> flux. Hot-spot N<sub>2</sub>O emissions from old urine and dung patches were persistent several months after application.</p>


2020 ◽  
Vol 148 ◽  
pp. 07003
Author(s):  
Waluyo Hatmoko ◽  
Levina ◽  
Radhika ◽  
Amirwandi ◽  
Rendy

Sustainable Development Goal (SDG). Water management is making a balance between water for livelihood and water as a resource. Environmental Flow Requirement (EFR) is water conservation, on the side of the water for livelihood, to sustain the river ecosystem. In Indonesia, the common quantification of EFR is dependable flow Q95%. However, there are alternative quantities: a) Guideline of irrigation states that 5% from the available water in the river is for environmental purposes; b) Adoption of the Tennant Method of using 10% of the mean flow; and recently Food and Agriculture Organization (FAO) in the framework of SDG proposed that in Java Island the EFR is from 40% to 50% of the mean annual flow. This paper discusses several ways of quantification of the EFR in Indonesia, and apply the different EFR quantities to Citarum, Cimanuk, and Cimandiri Rivers in West Java. It is concluded that EFR quantity according to FAO that might be suitable for the rivers in the pristine catchments in the southern part of West Java is too high for the rivers in the northern part of West Java which is heavily populated and maturely developed. Furthermore, the dependable flow of Q95% is found to be close to the quantity of FAO, but in the dry season, Q95% is more suitable. It is recommended using a modified FAO that combine with Q95% during the dry season.


Sign in / Sign up

Export Citation Format

Share Document