scholarly journals Influence of Spinning Temperature and Filler Content on the Properties of Melt-Spun Soy Flour/Polypropylene Fibers

Fibers ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 83 ◽  
Author(s):  
Ozgun Guzdemir ◽  
Amod A. Ogale

Polypropylene (PP) fibers are heavily used in disposable nonwovens fabrics because of their desirable properties and low-cost, but they are not biodegradable. With the goal of reducing non-biodegradable plastic waste in the environment, the primary aim of this study was to produce fibers with reduced content of PP for disposable fabrics by incorporating soy flour, a bio-based renewable material. An optimum processing temperature of 190 °C was established, and thin fibers with a diameter under 60 µm were successfully melt-spun. Inclusion of compatibilized soy (SFM) at 30 wt% resulted in fibers with a tensile modulus of 674 ± 245 MPa and a yield strength of 18 ± 4 MPa. At 15 wt% SFM, fiber tensile modulus and yield strength were 914 ± 164 and 29 ± 3, respectively. Although lower than those of neat PP fibers (1224 ± 136 MPa and 37 ± 3 MPa), these SFM/PP fiber properties are suitable for nonwoven applications. Additionally, partial presence of soy particulates on fiber surface imparted enhanced water absorption and colorability properties to the fibers while imparting the fibers the feel of natural fibers.Although more difficult to produce, soy-PP fibers possessed similar properties as compared to those of than soy-PE fibers reported in earlier studies.

2021 ◽  
Vol 5 (7) ◽  
pp. 177
Author(s):  
Roberto C. Vázquez Fletes ◽  
Denis Rodrigue

This work reports on the production and characterization of recycled high density polyethylene (R-HDPE) composites reinforced with maple fibers. The composites were produced by a simple dry-blending technique followed by compression molding. Furthermore, a fiber surface treatment was performed using a coupling agent (maleated polyethylene, MAPE) in solution. FTIR, TGA/DTG, and density analyses were performed to confirm any changes in the functional groups on the fiber surface, which was confirmed by SEM-EDS. As expected, the composites based on treated fiber (TC) showed improved properties compared to composites based on untreated fiber (UC). In particular, MAPE was shown to substantially improve the polymer–fiber interface quality, thus leading to better mechanical properties in terms of tensile modulus (23%), flexural modulus (54%), tensile strength (26%), and flexural strength (46%) as compared to the neat matrix. The impact resistance also increased by up to 87% for TC as compared to UC. In addition, the maximum fiber content to produce good parts increased from 15 to 75 wt% when treated fiber was used. These composites can be seen as sustainable materials and possible alternatives for the development of low-cost building/construction/furniture applications.


2021 ◽  
Vol 22 (2) ◽  
pp. 62
Author(s):  
Umi Lailatul Jamilah ◽  
Sujito Sujito

THE IMPROVEMENT OF RAMIE FIBER PROPERTIES AS COMPOSITE MATERIALS USING ALKALIZATION TREATMENT: NaOH CONCENTRATION. Ramie fiber is a plant fiber that has good quality and potential as a constituent of composite materials. In this study, ramie fiber surface modification was conducted through alkalization with various at 0%, 4%, 5%, 6%, 7%, 8%, and 9% concentrations of NaOH using a magnetic stirrer with a speed of 200 rpm at 70οC for 5 hours. Alkaline ramie fibers are characterized using the Cheson method to determine the chemical composition of ramie fiber, FT-IR test to determine the function group of ramie fiber, morphological test to know the surface structure and diameter of ramie fiber, as well as tensile test to know the tensile strength and tensile modulus of PLA/ramie composite. Overall, the increase of NaOH concentration up to 8% percentage was able to increase the level of cellulose and lignin ramie fibers by 88.180 % and 2.444 %, as well as lower hemicellulose levels of 1.446 %. The alkalization treatment of 8% NaOH, optimally reduces the hydrophilic properties of the fiber. The increased concentration of NaOH makes the fiber surface cleaner and the diameter smaller, but the fiber structure is damaged at a concentration of NaOH more than 8%. Tensile test results showed that alkalized ramie fibers with an 8% concentration of NaOH produced PLA/ramie composites with the highest tensile strength and tensile modulus of 57.37 MPa and 248.25 MPa. Thus, the optimum ramie fiber properties are increased using alkalization with an 8% concentration of NaOH.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1940 ◽  
Author(s):  
Levente Ferenc Tóth ◽  
Patrick De Baets ◽  
Gábor Szebényi

In this research work, unfilled and mono-filled polytetrafluoroethylene (PTFE) materials were developed and characterised by physical, thermal, viscoelastic, mechanical, and wear analysis. The applied fillers were graphene, alumina (Al2O3), boehmite alumina (BA80), and hydrotalcite (MG70) in 0.25/1/4/8 and 16 wt % filler content. All samples were produced by room temperature pressing–free sintering method. All of the fillers were blended with PTFE by intensive dry mechanical stirring; the efficiency of the blending was analysed by Energy-dispersive X-ray spectroscopy (EDS) method. Compared to neat PTFE, graphene in 4/8/16 wt % improved the thermal conductivity by ~29%/~84%/~157%, respectively. All fillers increased the storage, shear and tensile modulus and decreased the ductility. PTFE with 4 wt % Al2O3 content reached the lowest wear rate; the reduction was more than two orders of magnitude compared to the neat PTFE.


2022 ◽  
pp. 152808372110682
Author(s):  
Chengmei Gui ◽  
Di Sun ◽  
Wenya Liu ◽  
Haodong Ma ◽  
Zhenming Chen ◽  
...  

Multi-ion fabrics (especially silver ion fabrics) have special advantages as electromagnetic radiation, but the use of noble metals enhances its cost. Electroless nickel plating (EP-Ni) has great potential application in fabricating low-cost metallized material. Here, EP-Ni on pure cotton surface to fabricate radiation protection suits for pregnant woman was established to replace traditional protection suits with silver film. The active groups on the cotton/polyester blend fiber surface could absorb tin and palladium ions, acting as catalytic centers, which can catalyze the reduction of Ni2+ in the plating solution. Ni particle with (111) crystal plane preferential oriented crystal structure deposited on cotton surface with a coarse microstructure. The Ni deposited amount is about 19%. The fabricated material exhibited a shielding effectiveness of 29.5 dB. Studies also shown that bending has no negative effect on crystallinity and electrical property. But more bending times could lead to crack, which would decline electromagnetic shielding performance by 24%.


1977 ◽  
Vol 47 (11) ◽  
pp. 755-760 ◽  
Author(s):  
Reba Lawson ◽  
Smith Worley ◽  
H. H. Ramey

A statistical evaluation was made of the relationship of certain fiber properties to cohesive force and coefficient of variation of cohesive force. Significant positive correlations were found between the cohesive force and fiber length, tenacity, and fiber yellowness (+b); negative correlations were found with fiber perimeter and reflectance (Rd). When length, colorimeter values, and Micronaire readings were used as independent variables in a stepwise regression program, 53% of the variation in the cohesive force could be explained by upper half mean length and Rd. The addition of other fiber properties whose measurement was influenced by fiber surface properties increased the explainable variation in the cohesive force to 71%.


Author(s):  
Hossein Kazemi ◽  
Frej Mighri ◽  
Keun Wan Park ◽  
Slim Frikha ◽  
Denis Rodrigue

ABSTRACT In recent years, cellulose fibers have attracted considerable attention as biofillers for natural rubber (NR) composites. However, neat cellulose cannot be used as a substitute for conventional fillers due to its poor compatibility with NR. Therefore, a new surface treatment via maleic anhydride grafted to polyisoprene (MAPI) in solution was developed to improve the filler–matrix interaction. Different contents of carbon black (CB) and cellulose fibers (before and after modification) were used as a hybrid filler system to investigate the possibility of CB substitution in NR composites. First, contact angle, Fourier transformed infrared spectrometry (FTIR), and scanning electron microscopy (SEM) techniques were used to confirm the successful cellulose surface treatment. Second, morphological analysis, Payne effect, and swelling behavior of the rubber compounds in toluene confirmed the effect of cellulose treatment on improving the interfacial filler–matrix adhesion. Finally, the results showed that the composite filled with 20 phr modified cellulose and 20 phr CB (50% replacement of CB) exhibited even better results than the composite filled with 40 phr of CB, since the tensile strength was only 7% lower, but the elongation at break, tensile modulus at 100%, and storage modulus at 25 °C were respectively 35%, 24%, and 22% higher.


Author(s):  
Raquel Pinto ◽  
André Cardoso ◽  
Sara Ribeiro ◽  
Carlos Brandão ◽  
João Gaspar ◽  
...  

Microelectromechanical Systems (MEMS) are a fast growing technology for sensor and actuator miniaturization finding more and more commercial opportunities by having an important role in the field of Internet of Things (IoT). On the same note, Fan-out Wafer Level Packaging (FOWLP), namely WLFO technology of NANIUM, which is based on Infineon/ Intel eWLB technology, is also finding further applications, not only due to its high performance, low cost, high flexibility, but also due to its versatility to allow the integration of different types of components in the same small form-factor package. Despite its great potential it is still off limits to the more sensitive components as micro-mechanical devices and some type of sensors, which are vulnerable to temperature and pressure. In the interest of increasing FOWLP versatility and enabling the integration of MEMS, new methods of assembling and processing are continuously searched for. Dielectrics currently used for redistribution layer construction need to be cured at temperatures above 200°C, making it one of the major boundary for low temperature processing. In addition, in order to accomplish a wide range of dielectric thicknesses in the same package it is often necessary to stack very different types of dielectrics with impact on bill of materials complexity and cost. In this work, done in cooperation with the International Iberian Nanotechnology Laboratory (INL), we describe the implementation of commercially available SU-8 photoresist as a structural material in FOWLP, allowing lower processing temperature and reduced internal package stress, thus enabling the integration of components such as MEMS/MOEMS, magneto-resistive devices and micro-batteries. While SU-8 photoresist was first designed for the microelectronics industry, it is currently highly used in the fabrication of microfluidics as well as microelectromechanical systems (MEMS) and BIO-MEMS due to its high biocompatibility and wide range of available thicknesses in the same product family. Its good thermal and chemical resistance and also mechanical and rheological properties, make it suitable to be used as a structural material, and moreover it cures at 150°C, which is key for the applications targeted. Unprecedentedly, SU-8 photoresist is tested in this work as a structural dielectric for the redistribution layers on 300mm fan-out wafers. Main concerns during the evaluation of the new WLFO dielectric focused on processability quality; adhesion to multi-material substrate and metals (copper, aluminium, gold, ¦); between layers of very different thicknesses; and overall reliability. During preliminary runs, processability on 300 mm fan-out wafers was evaluated by testing different coating and soft bake conditions, exposure settings, post-exposure parameters, up to developing setup. The outputs are not only on process conditions and results but also on WLFO design rules. For the first time, a set of conditions has been defined that allows processing SU-8 on WLFO, with thickness values ranging from 1 um to 150 um. The introduction of SU-8 in WLFO is a breakthrough in this fast-growing advanced packaging technology platform as it opens vast opportunities for sensor integration in WLP technology.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1278 ◽  
Author(s):  
Wang ◽  
Xian ◽  
Li

Flax fiber has high sensitivity to moisture, and moisture uptake leads to the decrease of mechanical properties and distortion in shape. This paper attempts to graft flax fabric with nano-clay, with assistance from a silane-coupling agent, in order to improve hygrothermal resistance. The nano-clay grafted flax fabric reinforced epoxy (FFRP) composite produced through vacuum assisted resin infusion (VARI) process were subjected to 80% RH chamber for 12 weeks at 20, 40 and 70 °C, respectively. Moisture uptake, dimensional stability, and tensile properties was studied as a function of humidity exposure. Through SEM and FTIR, the effects of hygrothermal exposure was elucidated. In comparison to control FFRP plates, nano-clay grafting decreases saturation moisture uptake and the coefficient of diffusion of FFRP by 38.4% and 13.2%, respectively. After exposure for six weeks, the retention rate of the tensile modulus of the nano-clay grafted flax fiber based FFRP increased by 33.8% compared with that of the control ones. Nano-clay grafting also reduces the linear moisture expansion coefficient of FFRPs by 8.4% in a radial direction and 10.9% in a weft direction.


2013 ◽  
Vol 747-748 ◽  
pp. 478-482 ◽  
Author(s):  
Jian Wei Xu ◽  
Yun Song Zhao ◽  
Ding Zhong Tang

The tensile properties of a low-cost first generation single crystal superalloy DD16 have been investigated. The results show that values of the tensile strength and yield strength of DD16 alloy were similar at typical temperatures; from room temperature to 760, the yield strength of DD16 alloy increases; However, above 760, the yield strength of DD16 alloy decreases remarkably, and the maximum of the yield strength was 1145.5MPa at 760. From room temperature to 760, the fracture mode was cleavage fracture; But above 760, the fracture characteristics changed from cleavage to dimple.


Author(s):  
Yuanxin Zhou ◽  
Mohammad Monirul Hasan ◽  
Shaik Jeelani

In the present study, effect of vapor grown carbon nanofiber on the mechanical and thermal properties of polypropylene was investigated. Firstly, nanofibers were dry-mixed with polypropylene powder and extruded into filaments by using a single screw extruder. Then the tensile tests were performed on the single filament at the strain rate range from 0.02/min to 2/min. Experiments results show that both neat and nano-phased polypropylene were strain rate strengthening material. The tensile modulus and yield strength both increased with increasing strain rate. Experimental results also show that infusing nanofiber into polypropylene can increase tensile modulus and yield strength, but decrease the failure strain. At the same time, thermal properties of neat and nano-phased polypropylene were characterized by TGA. TGA results have showed that the nanophased system is more thermally stable. At last, a nonlinear constitutive equation has been developed to describe strain rate sensitive behavior of neat and nano-phased polypropylene.


Sign in / Sign up

Export Citation Format

Share Document