scholarly journals Hydrochemical Characterization and Suitability Assessment of Groundwater Quality in the Saboba and Chereponi Districts, Ghana

Hydrology ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 53
Author(s):  
Larry Pax Chegbeleh ◽  
Delali Kwasi Aklika ◽  
Bismark Awinbire Akurugu

Hydrochemical data of groundwater samples obtained from the mudstones, sandstones, and siltstones aquifer units that underlie the study area have been characterized. The aim of this study was to assess the suitability of groundwater for drinking, domestic, and agricultural purposes. The physico-chemical parameters were initially compared with the World Health Organization (WHO) standards for potable water. They were further subjected to various hydrochemical techniques to assess the overall water quality for drinking purposes. Conventional methods of assessing irrigation water suitability were also adopted. The results indicate that, with the exception of HCO3− characterized as unsuitable for drinking water, most of the parameters are within the WHO permissible limits and are thus characterized as suitable for drinking water. A few samples however show slight deviation. The results also show that the abundance of major cations in groundwater is in the order: Na+ > Ca2+ > Mg2+ > K+. However, the abundance of the major anions is in the order: HCO3− > Cl− > SO42−. Na-HCO3 is thus inferred as the dominant water type in the area. Analyses of the overall Water Quality Index (WQI) and irrigation water assessment indices suggest that groundwater in the area is generally suitable for drinking, domestic, and irrigation purposes.

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 690 ◽  
Author(s):  
Twana O. Abdullah ◽  
Salahalddin S. Ali ◽  
Nadhir A. Al-Ansari ◽  
Sven Knutsson

Evaluation of the hydrogeochemical characteristics and groundwater suitability for domestic use was conducted in the Halabja Saidsadiq Basin in the northeastern part of Iraq. The total studied area is about 1278 km2 with a specific Mediterranean-type continental interior climate, which is cold in winter and hot in summer. To conduct the required laboratory chemical analysis for groundwater samples in the studied basin, 78 groundwater samples, in total, were collected from 39 water wells in the dry and wet seasons in 2014 and analyzed for major cations and anions, and the results were compared with the permitted limits for drinking water. An examination of the chemical concentrations of the World Health Organization drinking water norms demonstrate that a large portion of the groundwater samples is suitable for drinking, and a preponderance of groundwater samples situated in the class of hard and very hard water types for both seasons. Suitability of groundwater for drinking use was additionally assessed according to the water quality index classification. This showed that more than 98% of groundwater samples have good water quality in the dry and wet seasons. Conversely, the classification of groundwater samples based on Piper’s diagram designates that the groundwater type is alkaline water, with existing bicarbonate along with sulfate and chloride. However, water–rock exchange processes and groundwater flow have been responsible for the dominant water type of Ca–Mg–HCO3.


2021 ◽  
Author(s):  
Dalèle Khous ◽  
Adnane Souffi Moulla ◽  
Mohammed El-Hocine Cherchali ◽  
Hadjer Chorfi ◽  
Mounia Benchabane ◽  
...  

Abstract The assessment of the origin of water that is allocated both for people and for irrigation in the eastern part of the Mitidja plain was carried out making use of geochemical and isotopic tools (18O, 2H and 3H). Both hydrochemical and isotopic information gathered for eastern Mitidja alluvial aquifer were used for the sake of assessing the mechanisms controlling groundwater chemistry. This allowed one to identify: (i) the natural or the anthropogenic processes that control groundwater quality, (ii) the origin of groundwater and when its recharge occurs. The work involved sampling campaigns, in situ measurements, and analyses of ions, heavy metals and water isotope content. Results showed a fair overall chemical quality of waters, since the assessment of water quality using water quality index (WQI) revealed that 90 % of the groundwater samples are good. Mitidja’s groundwaters fall into the Cl−SO4−Ca water type, that is mainly induced by water-rock interactions (dissolution of evaporites). The concentrations in Fe, Mn, Ni and Cd for some of the samples were found higher than the prescribed limits recommended by the World Health Organization. Isotopes indicate that groundwater is young since it originates from direct infiltration of precipitation that is mostly induced by Mediterranean atmospheric disturbances.


2019 ◽  
Vol 6 ◽  
pp. 64-70
Author(s):  
Ram Prasad Dhungana

Physico-chemical parameters and bacteriological characteristics of water were studied in sample collected from Sundarijal reservoir in January 2018. The present sanitary condition and human activities near the water bodies were also observed. It has been found that the physico-chemical characters were within the standard of World Health Organization (WHO) and National Drinking Water Quality Standards (NDWQS) for drinking water though the public awareness and proper management of watershed and reservoir premises were lacking. However, the coliform bacteria were high and water was not safe to consume without intense treatments with disinfectants.


Author(s):  
Hilal ARIOL ERBAŞ ◽  
Ayla BOZDAĞ

The study area includes Gazlıgöl (İhsaniye) and its surroundings located approximately 21 km north of Afyonkarahisar province. In this study, it is aimed to determine the hydrochemical properties of the water resources in the study area and their usability for different purposes. With this scope, pH, electrical conductivity (EC), main anion-cation and NO3 contents of a total of 19 groundwater samples in the region were determined. According to the results obtained, the pH values of the water resources in the region vary between 7.1 and 8.1 and the average is 7.7, which is basic water. The electrical conductivity values are between 110 and 1927 µS/cm, with an average of 461 µS/cm. The dominant water types in the region are Ca-Na-HCO3, Ca-Mg-HCO3, Ca-Mg-HCO3-SO4, Na-Ca-HCO3 and Na-Ca-HCO3-SO4. World Health Organization (WHO) and Turkish Standards Institute (TSE 266) standards were used to evaluate the usability of water resources in the study area as drinking water and it has been determined that only the samples H16 and H18 can be unfavorable to use as drinking water. Electrical conductivity, sodium percentage, sodium adsorption rate, residual sodium carbonate, Kelley index, permeability index parameters, Wilcox and US Salinity Laboratory Diagrams were used to evaluate the suitability of water resources as irrigation water. According to the results obtained, it was determined that all waters were suitable for irrigation water, except for samples HG16 and HG18. In addition, in terms of the industrial use properties of the water resources, HG1, HG11 and HG19 samples are in the "bubbling waters when boiling" class, while the HG16 and HG18 samples are in the "highly foaming waters when boiling" class. HG9, HG10, HG11, HG13, HG16, HG18 and HG19 samples in the class of “carbonate precipitations occur” and this type of water can cause rotting and calcification.


Author(s):  
Dora Cardona Rivas ◽  
Militza Yulain Cardona Guzmán ◽  
Olga Lucía Ocampo López

Objective: To characterize the burden of intestinal infectious diseases attributable to drinking-water quality in 27 municipalities in the central region of Colombia. Materials and methods: A time-trend ecological study. The drinking-water quality of the National Institute of Health and the Institute of Hydrology, Meteorology and Environmental Studies was identified. The disease burden was calculated based on the mortality registered in the National Department of Statistics and the records of morbidity attended by the Social Protection Integrated Information System. The etiological agents reported in morbidity records and the observation of environmental conditions in the municipalities of the study were included. The disease burden was determined according to the methodology recommended by the World Health Organization (WHO).


2021 ◽  
Vol 11 (8) ◽  
Author(s):  
Molla Rahman Shaibur ◽  
Mohammed Sadid Hossain ◽  
Shirina Khatun ◽  
F. K. Sayema Tanzia

AbstractThis study aimed to determine the quality of drinking water supplied in different types of food stalls in Jashore Municipality, Bangladesh. A total of 35 water samples were collected from different tea stalls, street side fast food stalls, normal restaurants and well-furnished restaurants. The water quality was evaluated by determining the distinct physical, chemical and biological parameters. The results revealed that the water used in the food stalls and restaurants for drinking purpose was in desired quality in terms of turbidity, electrical conductivity, pH, total dissolved solids, nitrate (NO3−), sulfate (SO42−), phosphate (PO43−), chloride (Cl−), sodium (Na) and potassium (K) concentrations. The values were within the permissible limit proposed by the Bangladesh Bureau of Statistics and the World Health Organization. Concentrations of calcium (Ca) and magnesium (Mg) found in several samples were higher than the World Health Organization standard. Iron (Fe) concentrations were higher than the permissible limit of the World Health Organization. Only 46% exceeded the permissible limit of Bangladesh Bureau Statistics. The threatening result was that the samples were contaminated by fecal coliform, indicating that the people of Jashore Municipality may have a greater chance of being affected by pathogenic bacteria. The drinking water provided in the street side fast food stalls was biologically contaminated. The findings demonstrate that the drinking water used in food stalls and restaurants of Jashore Municipality did not meet up the potable drinking water quality standards and therefore was detrimental to public health.


2021 ◽  
Vol 232 (8) ◽  
Author(s):  
Ali Chabuk ◽  
Zahraa Ali Hammood ◽  
Nadhir Al-Ansari ◽  
Salwan Ali Abed ◽  
Jan Laue

AbstractIraq currently undergoing the problem of water shortage, although Iraq has two Rivers (Euphrates and Tigris) pass throughout most of its areas, and they have represented a major source of water supply. In the current research, to evaluate the quality of the Euphrates river in Iraq based on the values of total dissolved salts (TDS), the TDS concentrations were collected from sixteen sections along the river in the three succeeding years (2011, 2012, and 2013). The evaluation of the river was done depending on the classification of (W.H.O. (World Health Organization). (2003). Total Dissolved Salts in Drinking-water: Background document for development of W.H.O. Guidelines for Drinking-water Quality. World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland). of rivers for drinking uses. Inverse Distance Weighting Technique (IDWT) as a tool in the GIS was employed to establish the maps of the river that using interpolation/prediction for the TDS concentrations to each selected year and the average values of TDS for these 3 years. Based on the five categories of rivers’ classification of the TDS concentrations according to the (W.H.O. (World Health Organization). (2003). Total Dissolved Salts in Drinking-water: Background document for development of W.H.O. Guidelines for Drinking-water Quality. World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland), the Euphrates river was classified, and the maps of classification for the years 2011, 2012 and 2013 and the average values for 3 years were created. The average values for 3 years of TDS along the Euphrates river indicated that the sections from SC-1 to SC-4 as moderate-water-quality-Category-3, the sections from SC-5 to SC-10 as poor-water-quality-Category-4, while the sections between SC-11 to SC-16 as very poor-water-quality-Category-5. The interpolation maps showed that the Euphrates river in Iraq was ranged from moderate water quality (Category-3) to very poor water quality (Category-5).


2021 ◽  
Vol 18 (1) ◽  
pp. 1-6
Author(s):  
Roselyn Naidu ◽  
Lionel Joseph ◽  
Syed Sauban Ghani

The current study investigated drinking water quality of samples taken from Arolevu village, a locality situated in Nadi, Fiji. The groundwater samples were collected and subjected to a comprehensive physicochemical and biological analysis. The analysis for the drinking water sample was conducted seasonally, six times a year, that is, three for the dry season and three for the wet season. The results retrieved from the analysis were compared to its maximum contamination levels (MCLs) based on the health-based guidelines provided by the World Health Organization (WHO). The WHO standards were used as an attribute to determine the sources of contaminants likely to be present at the study site. A degradation trend in drinking water quality in the context of climate change may lead to potential health impacts. Hence, it is important to understand seasonal variations in drinking water quality. A proper understanding of the drinking water quality through seasonal water analysis for nitrate, nitrite, potassium, calcium, magnesium and chlorine content as well as its microbiological presence to reduce preventable risks such as using calculated amounts of fertilisers and upgrading the sewerage system to alleviate drinking water contamination is devised through this study.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1321 ◽  
Author(s):  
Muhammad Aleem ◽  
Cao Shun ◽  
Chao Li ◽  
Arslan Aslam ◽  
Wu Yang ◽  
...  

The industrial augmentation and unguided anthropogenic activities contaminate water sources in most parts of the world especially in developing countries like Pakistan. High concentration of pollutants in groundwater affects human, soil, and crop health badly. The present study was conducted to investigate groundwater quality for drinking and irrigation purposes in an industrial zone of Pakistan. A GIS tool was used to investigate the spatial distribution of different physico-chemical parameters. In this study, the average results exceeding World Health Organization (WHO) and National Environmental Quality Standards (NEQS) were found for pH 7.84, total dissolved solids (TDS) 1492 mg/L, phosphate 0.51 mg/L, dissolved oxygen (DO) 9.92% saturation, F-coli 6.48 colonies/100 mL, Na+ 366 mg/L, HCO3− 771 mg/L, sulfate 251 mg/L, chlorides 427 mg/L, total hardness (as CaCO3) 292 mg/L, electrical conductivity (EC) 2408 μS/cm, iron (Fe) 0.48 mg/L, chrome (Cr) 0.50 mg/L, arsenic (As) 0.04 mg/L, total phosphorus (TP) 0.17 mg/L, sodium adsorption ratio (SAR) 9.76 (in meq/L), residual sodium carbonate (RSC) 9.28 meq/L, % ion balance 14.4 (in meq/L), percentage sodium ion (% Na+) concentration 58.9 meq/L, and water quality index (WQI) 69.0. The trend of cations and anions were (in meq/L) Na > Mg > Ca > K and HCO3 > Cl > CO3 > SO4 respectively. Although the results of the present study showed poor conditions of the groundwater for drinking as WQI but and irrigation purposes as SAR, it needs to improve some more conditions for the provision of safe drinking water and irrigation water quality.


Foods ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 206 ◽  
Author(s):  
Juliane Dao ◽  
Kathrin Stenchly ◽  
Oumar Traoré ◽  
Philip Amoah ◽  
Andreas Buerkert

Vegetable production in urban gardens of Ouagadougou contributes to food security, but water for irrigation is often of low quality. This is particularly acute if irrigation water is taken from wastewater polluted channels. This study aimed at (i) verifying to what degree irrigation water quality is correlated with contamination of lettuce with Escherichia coli, total coliforms, and Salmonella spp., and (ii) assessing effects of post-harvest handling on pathogen development during the trade chain. We tested pathogen removal efficiency on lettuce by applying post-harvest washing. Irrigation water of production areas in Ouagadougou (n = 10) showed a mean E. coli load of 2.1 × 105 CFU 100 mL−1. In 60% of the cases, irrigation water did not meet the standards of the World Health Organization (WHO) for safe irrigation water, and in 30% of the cases, irrigation water was contaminated with Salmonella spp. Loads of total coliforms on lettuce leaves ranged from 2.9 × 103 CFU g−1 to 1.3 × 106 CFU g−1, while E. coli averaged 1.1 × 102 CFU g−1. Results on post-harvest handling revealed that microbial loads increased along the trade chain. Overall, half of all lettuce samples (n = 60) were tested positively for Salmonella spp. The experiment showed that appropriate post-harvest handling could prevent the increase of total coliforms.


Sign in / Sign up

Export Citation Format

Share Document