scholarly journals Immunohistochemical Study of Glucose Transporter GLUT-5 in Duodenal Epithelium in Norm and in T-2 Mycotoxicosis

Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 849
Author(s):  
Piret Hussar ◽  
Florina Popovska-Percinic ◽  
Katerina Blagoevska ◽  
Tõnu Järveots ◽  
Ilmārs Dūrītis

Although patterns of glucose transporter expression and notes about diseases leading to adaptive changes in intestinal fructose transport have been well-characterized, the connection between infection and fructose transportation has been lightly investigated. Up to now only few studies on GLUT-5 expression and function under pathological conditions in bird intestines have been carried out. The aim of our current research was to immunolocalize GLUT-5 in chicken duodenal epithelium in norm and during T-2 mycotoxicosis. Material from chicken (Gallus gallus domesticus) duodenum was collected from twelve seven-day-old female broilers, divided into control group and broilers with T-2 mycotoxicosis. The material was fixed with 10% formalin and thereafter embedded into paraffin; slices 7 μm in thickness were cut, followed by immunohistochemical staining, according to the manufacturers guidelines (IHC kit, Abcam, UK) using polyclonal primary antibody Rabbit anti-GLUT-5. Our study revealed the strong expression of GLUT-5 in the apical parts of the duodenal epithelial cells in the control group chickens and weak staining for GLUT-5 in the intestinal epithelium in the T-2 mycotoxicosis group. Our results confirmed decreased the expression of GLUT-5 in the duodenal epithelium during T-2 mycotoxicosis.

2020 ◽  
Vol 8 (3) ◽  
pp. 103-112
Author(s):  
Atefeh SADEGHI SHERMEH ◽  
Majid KHOSHMIRSAFA ◽  
Ali-Akbar DELBANDI ◽  
Payam TABARSI ◽  
Esmaeil MORTAZ ◽  
...  

Introduction: Tuberculosis (TB) and especially resistant forms of it have a substantial economic burden on the community health system for diagnosis and treatment each year. Thus, investigation of this field is a priority for the world health organization (WHO). Cytokines play important roles in the relationship between the immune system and tuberculosis. Genetic variations especially single nucleotide polymorphisms (SNPs) impact cytokine levels and function against TB. Material and Methods: In this research SNPs in IFN-γ (+874 T/A) and IL-10 (-592 A/C) genes, and the effects of these SNPs on cytokine levels in a total of 87 tuberculosis patients and 100 healthy controls (HCs) were studied. TB patients divided into two groups: 1) 67 drug-sensitive (DS-TB) and 2) 20 drug-resistant (DR-TB) according to drug sensitivity test using polymerase chain reaction (PCR). For the genotyping of two SNPs, the PCR-based method was used and IFN-γ and IL-10 levels were measured by ELISA in pulmonary tuberculosis (PTB) and control group. Results: In -592A/C SNP, only two genotypes (AA, AC) were observed and both genotypes showed statistically significant differences between DR-TB and HCs (p=0.011). IL-10 serum levels in PTB patients were higher than HCs (p=0.02). The serum levels of IFN-γ were significantly higher in DS-TB patients than that of the other two groups (p<0.001); however, no significant differences were observed for allele and genotype frequencies in IFN-γ +874. Conclusions: Our results suggest that the SNP at -592 position of IL-10 gene may be associated with the susceptibility to DR-TB. However, further investigation is necessary. Keywords: Polymorphism, IFN-γ, IL-10, tuberculosis, drug-resistant tuberculosis


Author(s):  
Nabil A. Khouri ◽  
Haytham M. Daradka ◽  
Mohammed Z. Allouh ◽  
Ahmad S. Alkofahi

Abstract: The effects of: Both plants were administered orally to two separate mice groups at a dose of 800 mg/kg/day for 35 days and compared with control group. After treatment, 5 mice of each group were sacrificed and total mice weights, reproductive organs’ weights, spermatogenesis, and androgenic serum markers were investigated. The remaining mice from all groups were allowed to mate with virgin female mice to explore male fertility potential.: Results indicated that body and organs’ weights were increased significantly in mice treated with: We can conclude that


2021 ◽  
Vol 2 (2) ◽  
pp. 311-338
Author(s):  
Giulia Della Rosa ◽  
Clarissa Ruggeri ◽  
Alessandra Aloisi

Exosomes (EXOs) are nano-sized informative shuttles acting as endogenous mediators of cell-to-cell communication. Their innate ability to target specific cells and deliver functional cargo is recently claimed as a promising theranostic strategy. The glycan profile, actively involved in the EXO biogenesis, release, sorting and function, is highly cell type-specific and frequently altered in pathological conditions. Therefore, the modulation of EXO glyco-composition has recently been considered an attractive tool in the design of novel therapeutics. In addition to the available approaches involving conventional glyco-engineering, soft technology is becoming more and more attractive for better exploiting EXO glycan tasks and optimizing EXO delivery platforms. This review, first, explores the main functions of EXO glycans and associates the potential implications of the reported new findings across the nanomedicine applications. The state-of-the-art of the last decade concerning the role of natural polysaccharides—as targeting molecules and in 3D soft structure manufacture matrices—is then analysed and highlighted, as an advancing EXO biofunction toolkit. The promising results, integrating the biopolymers area to the EXO-based bio-nanofabrication and bio-nanotechnology field, lay the foundation for further investigation and offer a new perspective in drug delivery and personalized medicine progress.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Amitava Basu ◽  
Vijay K. Tiwari

AbstractEpigenetic mechanisms are known to define cell-type identity and function. Hence, reprogramming of one cell type into another essentially requires a rewiring of the underlying epigenome. Cellular reprogramming can convert somatic cells to induced pluripotent stem cells (iPSCs) that can be directed to differentiate to specific cell types. Trans-differentiation or direct reprogramming, on the other hand, involves the direct conversion of one cell type into another. In this review, we highlight how gene regulatory mechanisms identified to be critical for developmental processes were successfully used for cellular reprogramming of various cell types. We also discuss how the therapeutic use of the reprogrammed cells is beginning to revolutionize the field of regenerative medicine particularly in the repair and regeneration of damaged tissue and organs arising from pathological conditions or accidents. Lastly, we highlight some key challenges hindering the application of cellular reprogramming for therapeutic purposes.


1992 ◽  
Vol 282 (1) ◽  
pp. 231-235 ◽  
Author(s):  
D M Smith ◽  
S R Bloom ◽  
M C Sugden ◽  
M J Holness

Starvation (48 h) decreased the concentration of mRNA of the insulin-responsive glucose transporter isoform (GLUT 4) in interscapular brown adipose tissue (IBAT) (56%) and tibialis anterior (10%). Despite dramatic [7-fold (tibialis anterior) and 40-fold (IBAT)] increases in glucose utilization after 2 and 4 h of chow re-feeding, no significant changes in GLUT 4 mRNA concentration were observed in these tissues over this re-feeding period. The results exclude changes in GLUT 4 mRNA concentration in mediating the responses of glucose transport in these tissues to acute re-feeding after prolonged starvation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dong Wang ◽  
Caixia Liu ◽  
Xinyu Liu ◽  
Ying Zhang ◽  
Yu Wang

Abstract Background Due to metabolic changes in the second trimester and the increasing number of pregnant women with obesity and advanced maternal age, the incidence of gestational diabetes mellitus (GDM) remains high. This study aimed to evaluate the effects of GDM on fetal cardiac morphology and function, and to determine whether these changes increase with increasing estimated fetal weight (EFW). Methods Fifty-eight women with GDM (GDM group) and 58 women with a healthy pregnancy (control group) were included in this prospective observational cohort study. Each group included subgroups of 31 pregnant women with a gestational age between 24+0 weeks and 27+6 weeks as well as 27 pregnant women with a gestational age between 28+0 weeks and 40+0 weeks. For all fetuses, a cine of 2–3 s in the four-chamber view was obtained, and online speckle-tracking analysis was performed using the GE Automatic Fetal Heart Assessment Tool (fetal HQ; General Electric Healthcare Ultrasound, Zipf, Austria) to measure the global sphericity index (GSI), global longitudinal strain (GLS), fractional area change (FAC), 24-segment sphericity index (SI), and 24-segment end-diastolic diameter of the left ventricle (LV) and right ventricle (RV). Data were analyzed using the independent t-test and Wilcoxon rank-sum test, as applicable. Results The GDM group (mean HbA1c value was 5.3 ± 0.57 mmol/L) showed a lower GSI value than the control group (1.21 vs. 1.27, P = 0.000), which indicated a rounder shape of the heart. In addition, fetuses in the GDM group demonstrated significant impairment in cardiac function compared to those in the control group (LV-GLS: -18.26% vs. -22.70%, RV-GLS: -18.52% vs. -22.74%, LV-FAC: 35.30% vs. 42.36%, RV-FAC: 30.89% vs. 36.80%; P = 0.000 for all). Subgroup analyses according to gestational age (24+0–27+6 weeks and 28+0–40+0 weeks) showed that the statistical differences were retained between the GDM and control groups in each subgroup. Conclusions Fetuses of women with GDM present with signs of biventricular systolic dysfunction according to deformation analysis using fetal HQ. Additionally, the heart had a rounder shape in the GDM group than in the control group. This study showed that fetal HQ can be used to assess fetal cardiac morphology and function easily and quickly, and the effects of GDM on fetal cardiac morphology and function appeared from the second trimester. Thus, whether earlier and stricter clinical intervention was necessary remained to be further studied. Furthermore, future studies will need to supplement the effects of blood glucose levels on GLS, FAC, GSI, and 24-segment SI. Additionally, the long-term follow-up after birth should also be improved to observe the influence of changes in the indicators on the prognosis.


2019 ◽  
Vol 12 (563) ◽  
pp. eaat9900 ◽  
Author(s):  
Souvarish Sarkar ◽  
Dharmin Rokad ◽  
Emir Malovic ◽  
Jie Luo ◽  
Dilshan S. Harischandra ◽  
...  

Chronic, sustained inflammation underlies many pathological conditions, including neurodegenerative diseases. Divalent manganese (Mn2+) exposure can stimulate neurotoxicity by increasing inflammation. In this study, we examined whether Mn2+activates the multiprotein NLRP3 inflammasome complex to promote neuroinflammation. Exposing activated mouse microglial cells to Mn2+substantially augmented NLRP3 abundance, caspase-1 cleavage, and maturation of the inflammatory cytokine interleukin-1β (IL-1β). Exposure of mice to Mn2+had similar effects in brain microglial cells. Furthermore, Mn2+impaired mitochondrial ATP generation, basal respiratory rate, and spare capacity in microglial cells. These data suggest that Mn-induced mitochondrial defects drove the inflammasome signal amplification. We found that Mn induced cell-to-cell transfer of the inflammasome adaptor protein ASC in exosomes. Furthermore, primed microglial cells exposed to exosomes from Mn-treated mice released more IL-1β than did cells exposed to exosomes from control-treated animals. We also observed that welders exposed to manganese-containing fumes had plasma exosomes that contained more ASC than did those from a matched control group. Together, these results suggest that the divalent metal manganese acts as a key amplifier of NLRP3 inflammasome signaling and exosomal ASC release.


Sign in / Sign up

Export Citation Format

Share Document