scholarly journals Genetics of Omega-3 Long-Chain Polyunsaturated Fatty Acid Metabolism and Meat Eating Quality in Tattykeel Australian White Lambs

Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 587
Author(s):  
Shedrach Benjamin Pewan ◽  
John Roger Otto ◽  
Roger Huerlimann ◽  
Alyssa Maree Budd ◽  
Felista Waithira Mwangi ◽  
...  

Meat eating quality with a healthy composition hinges on intramuscular fat (IMF), fat melting point (FMP), tenderness, juiciness, flavour and omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) content. These health-beneficial n-3 LC-PUFA play significant roles in optimal cardiovascular, retinal, maternal and childhood brain functions, and include alpha linolenic (ALA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and docosapentaenoic (DPA) acids. The primary objective of this review was to access, retrieve, synthesise and critically appraise the published literature on the synthesis, metabolism and genetics of n-3 LC-PUFA and meat eating quality. Studies on IMF content, FMP and fatty acid composition were reviewed to identify knowledge gaps that can inform future research with Tattykeel Australian White (TAW) lambs. The TAW is a new sheep breed exclusive to MARGRA brand of lamb with an outstanding low fat melting point (28–39°C), high n-3 LC-PUFA EPA+DHA content (33–69mg/100g), marbling (3.4–8.2%), tenderness (20.0–38.5N) and overall consumer liking (7.9–8.5). However, correlations between n-3 LC-PUFA profile, stearoyl-CoA desaturase (SCD), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN), other lipogenic genes and meat quality traits present major knowledge gaps. The review also identified research opportunities in nutrition–genetics interactions aimed at a greater understanding of the genetics of n-3 LC-PUFA, feedlot finishing performance, carcass traits and eating quality in the TAW sheep. It was concluded that studies on IMF, FMP and n-3 LC-PUFA profiles in parental and progeny generations of TAW sheep will be foundational for the genetic selection of healthy lamb eating qualities and provide useful insights into their correlations with SCD, FASN and FABP4 genes.

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2288
Author(s):  
Shedrach Pewan ◽  
John Otto ◽  
Roger Huerlimann ◽  
Alyssa Budd ◽  
Felista Mwangi ◽  
...  

Meat quality data can only be obtained after slaughter when selection decisions about the live animal are already too late. Carcass estimated breeding values present major precision problems due to low accuracy, and by the time an informed decision on the genetic merit for meat quality is made, the animal is already dead. We report for the first time, a targeted next-generation sequencing (NGS) of single nucleotide polymorphisms (SNP) of lipid metabolism genes in Tattykeel Australian White (TAW) sheep of the MARGRA lamb brand, utilizing an innovative and minimally invasive muscle biopsy sampling technique for directly quantifying the genetic worth of live lambs for health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), intramuscular fat (IMF), and fat melting point (FMP). NGS of stearoyl-CoA desaturase (SCD), fatty acid binding protein-4 (FABP4), and fatty acid synthase (FASN) genes identified functional SNP with unique DNA marker signatures for TAW genetics. The SCD g.23881050T>C locus was significantly associated with IMF, C22:6n-3, and C22:5n-3; FASN g.12323864A>G locus with FMP, C18:3n-3, C18:1n-9, C18:0, C16:0, MUFA, and FABP4 g.62829478A>T locus with IMF. These add new knowledge, precision, and reliability in directly making early and informed decisions on live sheep selection and breeding for health-beneficial n-3 LC-PUFA, FMP, IMF and superior meat-eating quality at the farmgate level. The findings provide evidence that significant associations exist between SNP of lipid metabolism genes and n-3 LC-PUFA, IMF, and FMP, thus underpinning potential marker-assisted selection for meat-eating quality traits in TAW lambs.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 648 ◽  
Author(s):  
Felista W. Mwangi ◽  
Edward Charmley ◽  
Christopher P. Gardiner ◽  
Bunmi S. Malau-Aduli ◽  
Robert T. Kinobe ◽  
...  

A comprehensive review of the impact of tropical pasture grazing, nutritional supplementation during feedlot finishing and fat metabolism-related genes on beef cattle performance and meat-eating traits is presented. Grazing beef cattle on low quality tropical forages with less than 5.6% crude protein, 10% soluble starches and 55% digestibility experience liveweight loss. However, backgrounding beef cattle on high quality leguminous forages and feedlot finishing on high-energy diets increase meat flavour, tenderness and juiciness due to improved intramuscular fat deposition and enhanced mono- and polyunsaturated fatty acids. This paper also reviews the roles of stearoyl-CoA desaturase, fatty acid binding protein 4 and fatty acid synthase genes and correlations with meat traits. The review argues that backgrounding of beef cattle on Desmanthus, an environmentally well-adapted and vigorous tropical legume that can persistently survive under harsh tropical and subtropical conditions, has the potential to improve animal performance. It also identifies existing knowledge gaps and research opportunities in nutrition-genetics interactions aimed at a greater understanding of grazing nutrition, feedlot finishing performance, and carcass traits of northern Australian tropical beef cattle to enable red meat industry players to work on marbling, juiciness, tenderness and overall meat-eating characteristics.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1118
Author(s):  
Shedrach Benjamin Pewan ◽  
John Roger Otto ◽  
Robert Tumwesigye Kinobe ◽  
Oyelola Abdulwasiu Adegboye ◽  
Aduli Enoch Othniel Malau-Aduli

Health-conscious consumers increasingly demand healthier, tastier, and more nutritious meat, hence the continuous need to meet market specifications and demand for high-quality lamb. We evaluated the longissimus dorsi muscle of 147 Tattykeel Australian White (TAW) sheep fed on antioxidant-rich ryegrass pastures exclusive to MAGRA lamb brand for meat eating quality parameters of intramuscular fat (IMF) content, fat melting point (FMP) and omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). The aim was to assess the impact of linebreeding and gender on pasture-fed lamb eating quality and to test the hypothesis that variation in healthy lamb eating quality is a function of lamb gender and not its antioxidant status or inbreeding coefficient (IC). After solid-phase extraction and purification, phenolics and antioxidant enzyme activities were analysed by high-performance liquid chromatography and mass spectrometry. IMF and fatty acid composition were determined using solvent extraction and gas chromatography, respectively. IC was classified into low (0–5%), medium (6–10%) and high (>10%) and ranged from 0–15.6%. FMP and IMF ranged from 28 to 39 °C and 3.4% to 8.2%, with overall means of 34.6 ± 2.3 °C and 4.4 ± 0.2%, respectively, and n-3 LC-PUFA ranged from “source” to “good source” levels of 33–69 mg/100 g. Ewes had significantly (P ˂ 0.0001) higher IMF, C22:5n-3 (DPA), C22:6n-3 (DHA), C18:3n-6, C20:3, C22:4n-6, C22:5n-6, total monounsaturated (MUFA), PUFA and Σn-3 fatty acids and lower total saturated fatty acids (SFA) and FMP, than rams. As IC increased, there were no differences in FMP and IMF. Folin–Ciocalteu total phenolics, ferric reducing antioxidant power and antioxidant activities of glutathione peroxidase, catalase and superoxide dismutase enzymes did not differ by either gender or IC. This study provides evidence that IC is inconsequential in affecting antioxidant status, IMF, FMP and n-3 LC-PUFA in linebred and pasture-fed TAW sheep because the observed variation in individual fatty acids was mainly driven by gender differences between ewes and rams, hence the need to accept the tested hypothesis. This finding reinforces the consistent healthy eating quality of MARGRA lamb brand from TAW sheep regardless of its linebred origin.


2013 ◽  
Vol 80 (2) ◽  
pp. 165-173 ◽  
Author(s):  
Cinzia Marchitelli ◽  
Giovanna Contarini ◽  
Giovanna De Matteis ◽  
Alessandra Crisà ◽  
Lorraine Pariset ◽  
...  

In this work, the genetic variation of milk FA was investigated in three different bovine breeds, the Jersey, the Piedmontese and the Valdostana, and at different lactation stages. All animals were genotyped for 21 Single Nucleotide Polymorphisms located within nine candidate genes involved in lipid synthesis: diacylglycerol acyltransferase 1 and 2 (DGAT1, 2); stearoyl-CoA desaturase (SCD); growth hormone receptor (GHR); fatty acid synthase (FASN); acyl-CoA dehydrogenase (ACAD); fatty acid binding protein (FABP4); lipoprotein lipase (LPL); and leptin gene (LEP). The highest milk-fat Jersey breed also showed the highest content of saturated FA. Throughout lactation, the breeds showed a similar variation in the FA, with a decrease in the short-chain, this was accompanied by a general increase in the long chain FA at the end of lactation. The increase in long chain saturated FA was particularly evident in the case of the Jersey. The effect of SCD gene on the C14 desaturation index was confirmed; the DGAT1 gene was polymorphic only in the Jersey breed, but its effect was confirmed only on milk fat content; three further potential candidate genes were identified: first, the FABP4 gene, which was found to influence medium and long chain FA in all the breeds, but not the desaturation indices; second, the FASN gene, which was found to influence the amount of PUFA in the Piedmontese and the Valdostana, and third, the LPL gene, which was found to affect fat content in the Piedmontese.


2007 ◽  
Vol 35 (s1) ◽  
pp. S5-S11 ◽  
Author(s):  
Berthold Koletzko ◽  
Elvira Larqué ◽  
Hans Demmelmair

AbstractConsiderable evidence exists for marked beneficial effects of omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) during pregnancy. The omega-3 LC-PUFA docosahexaenoic acid (DHA) is incorporated in large amounts in fetal brain and other tissues during the second half of pregnancy, and several studies have provided evidence for a link between early DHA status of the mother and visual and cognitive development of her child after birth. Moreover, the supplementation of omega-3 LC-PUFA during pregnancy increases slightly infant size at birth, and significantly reduces early preterm birth before 34 weeks of gestation by 31%. In our studies using stable isotope methodology in vivo, we demonstrated active and preferential materno-fetal transfer of DHA across the human placenta and found the expression of human placental fatty acid binding and transport proteins. From the correlation of DHA values with placental fatty acid transport protein 4 (FATP 4), we conclude that this protein is of key importance in mediating DHA transport across the human placenta. Given the great importance of placental DHA transport for infant outcome, further studies are needed to fully appreciate the effects and optimal strategies of omega-3 fatty acid interventions in pregnancy, dose response relationships, and the potential differences between subgroups of subjects such as women with gestational diabetes or other gestational pathology. Such studies should contribute to optimize substrate intake during pregnancy and lactation that may improve pregnancy outcome as well as fetal growth and development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rima Irwinda ◽  
Rabbania Hiksas ◽  
Aprilia Asthasari Siregar ◽  
Yudianto Budi Saroyo ◽  
Noroyono Wibowo

AbstractLong-Chain Polyunsaturated Fatty Acid (LCPUFA) is essential throughout pregnancy, since deficiency of LPUFA may linked to obstetrical complications. This study aimed to investigate LCPUFA status in severe preeclampsia and preterm birth. A cross sectional study was conducted in 104 pregnant women, which divided into normal pregnancy, severe preeclampsia and preterm birth groups. Serum percentage and concentration of total LCPUFA, omega-3, alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), omega-6, linoleic acid (LA), and arachidonic acid (AA) were measured using gas chromatography/mass spectrometry. Receiver operating characteristic (ROC), bivariate and multivariate analysis were performed. Severe preeclampsia showed the highest concentration of total PUFA and the lowest DHA percentage, with significantly higher Omega-6/Omega-3 ratio (p = 0.004) and lower omega-3 index (p < 0.002) compared to control. Preterm birth showed the least omega-3 concentrations, with significantly low omega-6 derivates (LA (p = 0.014) and AA (p = 0.025)) compared to control. LCPUFA parameters have shown to increase the risk in both conditions, particularly ALA ≤ 53 µmol/L in preeclampsia with OR 5.44, 95%CI 1.16–25.42 and preterm birth with OR 4.68, 95%CI 1.52–14.38. These findings suggest that severe preeclampsia and preterm birth have an imbalance in LCPUFA status.


1975 ◽  
Vol 250 (6) ◽  
pp. 2333-2338
Author(s):  
JD Ashbrook ◽  
AA Spector ◽  
EC Santos ◽  
JE Fletcher

1996 ◽  
Vol 319 (2) ◽  
pp. 483-487 ◽  
Author(s):  
Claire MEUNIER-DURMORT ◽  
Hélène POIRIER ◽  
Isabelle NIOT ◽  
Claude FOREST ◽  
Philippe BESNARD

The role of fatty acids in the expression of the gene for liver fatty acid-binding protein (L-FABP) was investigated in the well-differentiated FAO rat hepatoma cell line. Cells were maintained in serum-free medium containing 40 µM BSA/320 µM oleate. Western blot analysis showed that oleate triggered an approx. 4-fold increase in the cytosolic L-FABP level in 16 h. Oleate specifically stimulated L-FABP mRNA in time-dependent and dose-dependent manners with a maximum 7-fold increase at 16 h in FAO cells. Preincubation of FAO cells with cycloheximide prevented the oleate-mediated induction of L-FABP mRNA, showing that protein synthesis was required for the action of fatty acids. Run-on transcription assays demonstrated that the control of L-FABP gene expression by oleate was, at least in part, transcriptional. Palmitic acid, oleic acid, linoleic acid, linolenic acid and arachidonic acid were similarly potent whereas octanoic acid was inefficient. This regulation was also found in normal hepatocytes. Therefore long-chain fatty acids are strong inducers of L-FABP gene expression. FAO cells constitute a useful tool for studying the underlying mechanism of fatty acid action.


2015 ◽  
Vol 11 (9) ◽  
pp. 2464-2472 ◽  
Author(s):  
Dan Coursolle ◽  
Jiazhang Lian ◽  
John Shanklin ◽  
Huimin Zhao

An orthogonal type I FAS was introduced into E. coli to increase the production of long chain alcohols and alkanes.


2021 ◽  
Vol 359 ◽  
pp. 129828
Author(s):  
Fany Sardenne ◽  
Eleonora Puccinelli ◽  
Marie Vagner ◽  
Laure Pecquerie ◽  
Antoine Bideau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document