scholarly journals Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review

Author(s):  
Mahbubur Rahman ◽  
Mahbub-Ul Alam ◽  
Sharmin Khan Luies ◽  
Abul Kamal ◽  
Sharika Ferdous ◽  
...  

Fresh produce, when consumed raw, can be a source of exposure to antimicrobial residues, antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) of clinical importance. This review aims to determine: (1) the presence and abundance of antimicrobial residues, ARB and ARGs in fresh agricultural products sold in retail markets and consumed raw; (2) associated health risks in humans; and (3) pathways through which fresh produce becomes contaminated with ARB/ARGs. We searched the Ovid Medline, Web of Science and Hinari databases as well as grey literature, and identified 40 articles for inclusion. All studies investigated the occurrence of multidrug-resistant bacteria, and ten studies focused on ARGs in fresh produce, while none investigated antimicrobial residues. The most commonly observed ARB were E. coli (42.5%) followed by Klebsiella spp. (22.5%), and Salmonella spp. (20%), mainly detected on lettuce. Twenty-five articles mentioned health risks from consuming fresh produce but none quantified the risk. About half of the articles stated produce contamination occurred during pre- and post-harvest processes. Our review indicates that good agricultural and manufacturing practices, behavioural change communication and awareness-raising programs are required for all stakeholders along the food production and consumption supply chain to prevent ARB/ARG exposure through produce.

2021 ◽  
Vol 9 ◽  
Author(s):  
Valentin Duvauchelle ◽  
Chaimae Majdi ◽  
David Bénimélis ◽  
Catherine Dunyach-Remy ◽  
Patrick Meffre ◽  
...  

Infections caused by drug-resistant bacteria are a serious threat to human and global public health. Moreover, in recent years, very few antibiotics have been discovered and developed by pharmaceutical companies. Therefore, there is an urgent need to discover and develop new antibacterial agents to combat multidrug-resistant bacteria. In this study, two novel series of juglone/naphthazarin derivatives (43 compounds) were synthesized and evaluated for their antibacterial properties against various clinical and reference Gram-positive MSSA, clinical Gram-positive MRSA, and clinical and reference Gram-negative bacteria E. coli and P. aeruginosa. These strains are of clinical importance because they belong to ESKAPE pathogens. Compounds 3al, 5ag, and 3bg showed promising activity against clinical and reference MSSA (MIC: 1–8 µg/ml) and good efficacy against clinical MRSA (MIC: 2–8 µg/ml) strains. 5am and 3bm demonstrated better activity on both MSSA (MIC: 0.5 µg/ml) and MRSA (MIC: 2 µg/ml) strains. Their MICs were similar to those of cloxacillin against clinical MRSA strains. The synergistic effects of active compounds 3al, 5ag, 5am, 3bg, and 3bm were evaluated with reference antibiotics, and it was found that the antibiotic combination with 3bm efficiently enhanced the antimicrobial activity. Compound 3bm was found to restore the sensitivity of clinical MRSA to cloxacillin and enhanced the antibacterial activity of vancomycin when they were added together. In the presence of 3bm, the MIC values of vancomycin and cloxacillin were lowered up to 1/16th of the original MIC with an FIC index of 0.313. Moreover, compounds 3al, 5ag, 5am, 3bg, and 3bm did not present hemolytic activity on sheep red blood cells. In silico prediction of ADME profile parameter results for 3bm is promising and encouraging for further development.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 191 ◽  
Author(s):  
Sobur ◽  
Hasan ◽  
Haque ◽  
Mridul ◽  
Noreddin ◽  
...  

Houseflies (Musca domestica) are well-known mechanical vectors for spreading multidrug-resistant bacteria. Fish sold in open markets are exposed to houseflies. The present study investigated the prevalence and antibiotypes of multidrug-resistant (MDR) Salmonella spp. in houseflies captured from a fish market. Direct interviews with fish vendors and consumers were also performed to draw their perceptions about the role of flies in spreading antibiotic-resistant bacteria. A total of 60 houseflies were captured from a local fish market in Bangladesh. The presence of Salmonella spp. was confirmed using PCR method. Antibiogram was determined by the disk diffusion method, followed by the detection of tetA, tetB, and qnrA resistance genes by PCR. From the interview, it was found that most of the consumers and vendors were not aware of antibiotic resistance, but reported that flies can carry pathogens. Salmonella spp. were identified from the surface of 34 (56.7%) houseflies, of which 31 (91.2%) were found to be MDR. This study revealed 25 antibiotypes among the isolated Salmonella spp. All tested isolates were found to be resistant to tetracycline. tetA and tetB were detected in 100% and 47.1% of the isolates, respectively. Among the 10 isolates phenotypically found resistant to ciprofloxacin, six (60%) were found to be positive for qnrA gene. As far as we know, this is the first study from Bangladesh to report and describe the molecular detection of multidrug-resistant Salmonella spp. in houseflies in a fish market facility. The occurrence of a high level of MDR Salmonella in houseflies in the fish market is of great public health concerns.


2020 ◽  
Vol 15 (8) ◽  
pp. 649-677 ◽  
Author(s):  
Juliana C de M Campos ◽  
Luis CM Antunes ◽  
Rosana BR Ferreira

Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Olufunmiso Olusola Olajuyigbe ◽  
Otunola Adedayo ◽  
Roger Murugas Coopoosamy

The antibacterial activity of the extracts of Aframomum melegueta including n-hexane extract (NHE), nondefatted methanol extract (NDME), and defatted methanol extract (DME) was investigated in this study. The NHE exhibited no antibacterial activity. The DME showed higher antibacterial activity than the NDME against the different isolates. At the highest concentration of 10 mg/mL in agar diffusion, NDME produced inhibition zones ranging from 11 to 29 mm against the microorganisms while DME produced inhibition zones ranging from 20 to 40 mm with the concentration of 10 mg/mL against the microorganisms. 0.1 mg/mL of the DME produced inhibition zones ranging between 12 and 14 mm in Aeromonas hydrophila ATCC 35654 and Pseudomonas aeruginosa ATCC 15442, respectively, while none of the isolates were inhibited by the NDME at a concentration of 1 mg/mL or less. In the agar dilution assay, the MICs of the NDME and DME ranged between 0.31 and 10 mg/mL, but more isolates were inhibited at 0.31 mg/mL of DME than those in NDME. In macrobroth assay, the MICs of the NDME ranged between 0.15 and 5.0 mg/mL and the MBCs ranged between 0.63 and 5.0 mg/mL, and the MICs of the DME ranged between 0.08 and 5.0 mg/mL and the MBCs were between 0.31 and 5.0 mg/mL. This study indicated that DME was more active with higher antibacterial activity than the NDME of this plant, and extracting the fatty portion of plant materials prior susceptibility testing would allow plant extracts to be more effective as well as justifying the use of Aframomum melegueta in traditional medicine for the treatment of bacterial infections.


2020 ◽  
Vol 50 (4) ◽  
Author(s):  
Milena da Cruz Costa ◽  
Alexsandra Iarlen Cabral Cruz ◽  
Aline Simões da Rocha Bispo ◽  
Mariza Alves Ferreira ◽  
João Albany Costa ◽  
...  

ABSTRACT: This study aimed to evaluate the microbiological quality and the transmission of multidrug-resistant bacteria in different spices sold in town fairs (local food markets) in the municipalities of Recôncavo Baiano. Samples of black pepper, oregano, and cinnamon were collected over a period of six months and investigated for coliforms at 45 °C, Staphylococcus spp., Staphylococcus aureus, Bacillus spp., Bacillus cereus, Escherichia coli and Salmonella spp. The contamination in the black pepper samples (log 4.66 CFU g-1) was higher (P>0.05), than those of cinnamon (log 2.55 CFU g-1) and oregano (log 2.49 CFU g-1), particularly for B. cereus. E. coli (89%) and Salmonella spp. (67%) were isolated only from black pepper. B. cereus and S. aureus showed greater resistance to β-lactams (penicillin, oxacillin, and cefepime), with approximately 40% of the strains with a multiple antimicrobial resistance (MAR) index of 0.33 (i.e., resistant to three antimicrobials). E. coli was more resistant to ampicillin and Salmonella spp. to nalidixic acid, ampicillin, and ceftriaxone. Salmonella spp. had a MAR index ranging from 0.16 to 0.91 (i.e, resistant to up to 11 antimicrobials), and E. coli to up to 0.58 (i.e., resistant to 7 antimicrobials). In conclusion, the spices sold in the town fairs of Recôncavo Baiano are of low microbiological quality, with the presence of pathogens, of which some display high resistance to antimicrobials that are commonly used for treating foodborne illnesses.


Author(s):  
Adam Mustapha ◽  
Mustafa Alhaji Isa ◽  
Ibrahim Yusuf Ngoshe ◽  
Hashidu Bala

Aim: Prevalence of multidrug resistant bacteria on apparently health animals has turned antibiotic resistance to multifaceted process and threatens global food security and public health. The aim of the present study was to investigate the resistance profile of isolates from apparently healthy cattle in Maiduguri, Nigeria. Methodology: A total of 120 nasal swab samples were collected from cattle. Colony identification was according to the guidelines of Bergey’s Manual of Determinative Bacteriology. The susceptibility pattern of the isolates was conducted on the identified isolates according to the Modified Kirby-Baur disc diffusion method on Muller-Hilton agar and interpreted according to the procedures of Clinical Laboratory Standards Institute (CLSI, 2018) guidelines. Multiple Antibiotic Resistance Index (MARI) was calculated using the formula, MARI=a/b where “a” is the number of antibiotic resisted and “b” is the total number of antibiotic used in the study. Results: Of the total samples (120) from cattle 96 (80%) detected the following isolates; E. coli was the most commonly recovered isolates (33, 34.4%), followed by Klebsiella spp (28, 29.2%), Salmonella spp (21, 21.9%) and Pseudomonas aeruginosa (14, 14.5%). In this study, all the recovered isolates were found to be multidrug resistant gram negative bacteria, with highest resistance was shown by Salmonella spp. The high MARI observed in all the isolates in this study ranging from 0.7 to 0.9. MARI value of 0.2 > is suggests multiple antibiotic resistant bacteria and indicate presence of highly resistant bacteria. Conclusion: The study indicates highly resistant bacteria are carried by healthy food animals. Thus, there is need for continued monitoring of antibiotics use in animal husbandry to prevent further spread of resistance in Maiduguri, Nigeria.


2017 ◽  
Vol 80 (12) ◽  
pp. 2048-2055 ◽  
Author(s):  
Tao Yu ◽  
Xiaobing Jiang ◽  
Yu Liang ◽  
Yanping Zhu ◽  
Jinhe Tian ◽  
...  

ABSTRACT The aim of this study was to investigate antimicrobial resistance and the presence and transferability of corresponding resistance genes and integrons in bacteria isolated from cooked meat samples in the People's Republic of China. A total of 150 isolates (22 species belonging to 15 genera) were isolated from 49 samples. Resistance of these isolates to antimicrobials was commonly observed; 42.7, 36.0, and 25.3% of the isolates were resistant to tetracycline, streptomycin, and ampicillin, respectively. Multidrug resistance was observed in 41 (27.3%) of the isolates. Sixteen resistance genes, i.e., blaTEM-1 and blaCTX-M-14 (β-lactams), aac(3)-IIa (gentamicin), strA and strB (streptomycin), qnrB and qnrS (fluoroquinolone), sul1, sul2, and sul3 (sulfamethoxazole), cat1 and cat2 (chloramphenicol), and tetM, tetA, tetS, and tetB (tetracycline), were found in 54 isolates. One isolate of Pseudomonas putida carried qnrB, and sequence analysis of the PCR product revealed 96% identity to qnrB2. The qnr genes were found coresiding and were cotransferred with bla genes in two isolates. Twelve isolates were positive for the class 1 integrase gene, and four isolates carried the class 2 integrase gene. However, no class 3 integrase gene was detected. One isolate of Proteus mirabilis carried dfrA32-ereA-aadA2, and this unusual array could be transferred to Escherichia coli. Nonclassic class 1 integrons lacking qacEΔ1 and sul1 genes were found in 2 of the 12 intI1-positive isolates. Our results revealed the presence of multidrug-resistant bacteria in cooked meats and the presence and transferability of resistance genes in some isolates, suggesting that cooked meat products may act as reservoirs of drug-resistant bacteria and may facilitate the spread of resistance genes.


2016 ◽  
pp. 21-24
Author(s):  
Md Kamruzzaman Siddiqui ◽  
Nazma Khatoon ◽  
Pravas Chandra Roy

Antimicrobial resistance in both pathogenic and commensal bacteria is increasing steadily. Failure of antibiotic resistant bacteria containment is responsible for this expansion. Healthcare effluent acts as the store house of harmful infectious pathogens. Potential health risk includes spreading of diseases by these pathogens and wide dissemination of antimicrobial resistance genes. The present study was carried out to investigate the multiple-drug resistance among the bacterial strains that were isolated and identified from the effluents of Jessore Medical College Hospital & Jessore Queen’s hospital private limited. Identified bacteria were E. coli , Klebsiella spp., Enterobacter spp., Proteus vulgaris and Salmonella spp.. Occurrence of E. coli and Enterobacter spp. were found to have the highest percentages and present in majority of the samples. The identified organisms antibiotic resistant pattern were analyzed by agar disc diffusion method against 6 antibiotics. Results of antibiotic susceptibility test showed that all of the isolates were multi-drug resistant (e”4). From the study, we observed that 75% of the isolates were resistant to amoxicillin, followed by Ampicillin (64%), Chloramphenicol (31%), Gentamycin (29%), Nitrofurantoin (27%) and least resistant being Ciprofloxacin 23%. Among the isolates Salmonella spp. were showed highest rate of resistance against all the used antibiotics. The result denotes that, the identified bacteria have been well exposed to the tested antimicrobials and they have established mechanisms to avoid them. Therefore, proper waste water treatment plant should be established to diminish the risk of disseminating multiple drug resistant microorganisms for the safeguard of public health.Bangladesh J Microbiol, Volume 32, Number 1-2,June-Dec 2015, pp 21-24


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1712
Author(s):  
Abdel-Moamen E. Meshref ◽  
Ibrahim E. Eldesoukey ◽  
Abdulaziz S. Alouffi ◽  
Saleh A. Alrashedi ◽  
Salama A. Osman ◽  
...  

The present study was designed to investigate the presence of genes that conferred resistance to antimicrobials among Enterobacteriaceae that were isolated from diarrhoeic calves. A total of 120 faecal samples were collected from diarrhoeic calves that were raised in Kafr El-Sheikh governorate, Egypt. The samples were screened for Enterobacteriaceae. A total of 149 isolates of bacteria were recovered and identified; Escherichia coli was found to be the most overwhelming species, followed by Citrobacter diversus, Shigella spp., Serratia spp., Providencia spp., Enterobacter spp., Klebsiella pneumoniae, Proteus spp., Klebsiella oxytoca, and Morganella morganii. All isolates were tested for susceptibility to 12 antimicrobials; resistant and intermediately resistant strains were screened by conventional polymerase chain reaction for the presence of antimicrobial resistance genes. Of the 149 isolates, 37 (24.8%) exhibited multidrug resistant phenotypes. The most prevalent multidrug resistant species were E. coli, C. diversus, Serratia spp., K. pneumoniae, Shigella spp., Providencia spp., and K. oxytoca. Class 1 integrons were detected in 28 (18.8%) isolates. All isolates were negative for class 2 integrons. The blaTEM gene was identified in 37 (24.8%) isolates, whereas no isolates carried the blaCTX-M gene. The florfenicol gene (floR) was detected in two bacterial isolates (1.3%). The findings of this study reveal that calves may act as potential reservoirs of multidrug resistant bacteria that can be easily transmitted to humans.


Sign in / Sign up

Export Citation Format

Share Document