scholarly journals Extract of Deschampsia antarctica (EDA) Prevents Dermal Cell Damage Induced by UV Radiation and 2,3,7,8-Tetrachlorodibenzo-p-dioxin

2019 ◽  
Vol 20 (6) ◽  
pp. 1356 ◽  
Author(s):  
Alicia Zamarrón ◽  
Esther Morel ◽  
Silvia Lucena ◽  
Manuel Mataix ◽  
Azahara Pérez-Davó ◽  
...  

Exposure to natural and artificial light and environmental pollutants are the main factors that challenge skin homeostasis, promoting aging or even different forms of skin cancer through a variety of mechanisms that include accumulation of reactive oxygen species (ROS), engagement of DNA damage responses, and extracellular matrix (ECM) remodeling upon release of metalloproteases (MMPs). Ultraviolet A radiation is the predominant component of sunlight causative of photoaging, while ultraviolet B light is considered a potentiator of photoaging. In addition, different chemicals contribute to skin aging upon penetration through skin barrier disruption or hair follicles, aryl hydrocarbon receptors (AhR) being a major effector mechanism through which toxicity is exerted. Deschampsia antarctica is a polyextremophile Gramineae capable of thriving under extreme environmental conditions. Its aqueous extract (EDA) exhibits anti- photoaging in human skin cells, such as inhibition of MMPs, directly associated with extrinsic aging. EDA prevents cellular damage, attenuating stress responses such as autophagy and reducing cellular death induced by UV. We demonstrate that EDA also protects from dioxin-induced nuclear translocation of AhR and increases the production of loricrin, a marker of homeostasis in differentiated keratinocytes. Thus, our observations suggest a potential use exploiting EDA’s protective properties in skin health supplements.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eui Jeong Han ◽  
Seo-Young Kim ◽  
Hee-Jin Han ◽  
Hyun-Soo Kim ◽  
Kil-Nam Kim ◽  
...  

AbstractThe present study aimed to evaluate the protective effect of a methanol extract of Sargassum horneri (SHM), which contains 6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one (HTT) and apo-9′-fucoxanthinone, against ultraviolet B (UVB)-induced cellular damage in human keratinocytes and its underlying mechanism. SHM significantly improved cell viability of UVB-exposed human keratinocytes by reducing the generation of intracellular reactive oxygen species (ROS). Moreover, SHM inhibited UVB exposure-induced apoptosis by reducing the formation of apoptotic bodies and the populations of the sub-G1 hypodiploid cells and the early apoptotic cells by modulating the expression of the anti- and pro-apoptotic molecules, Bcl-2 and Bax, respectively. Furthermore, SHM inhibited NF-κB p65 activation by inducing the activation of Nrf2/HO-1 signaling. The cytoprotective and antiapoptotic activities of SHM are abolished by the inhibition of HO-1 signaling. In further study, SHM restored the skin dryness and skin barrier disruption in UVB-exposed human keratinocytes. Based to these results, our study suggests that SHM protects the cells against UVB-induced cellular damages through the Nrf2/HO-1/NF-κB p65 signaling pathway and may be potentially useful for the prevention of UVB-induced skin damage.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sheikh Ahmad Umar ◽  
Naikoo Hussain Shahid ◽  
Lone Ahmad Nazir ◽  
Malik Ahmad Tanveer ◽  
Gupta Divya ◽  
...  

Ultraviolet (UV) exposure to the skin causes photo-damage and acts as the primary etiological agent in photo-carcinogenesis. UV-B exposure induces cellular damage and is the major factor challenging skin homeostasis. Autophagy allows the fundamental adaptation of cells to metabolic and oxidative stress. Cellular dysfunction has been observed in aged tissues and in toxic insults to cells undergoing stress. Conversely, promising anti-aging strategies aimed at inhibiting the mTOR pathway have been found to significantly improve the aging-related disorders. Recently, autophagy has been found to positively regulate skin homeostasis by enhancing DNA damage recognition. Here, we investigated the geno-protective roles of autophagy in UV-B-exposed primary human dermal fibroblasts (HDFs). We found that UV-B irradiation to HDFs impairs the autophagy response in a time- and intensity-independent manner. However, improving autophagy levels in HDFs with pharmacological activators regulates the UV-B-induced cellular stress by decreasing the induction of DNA photo-adducts, promoting the DNA repair process, alleviating oxidative and ER stress responses, and regulating the expression levels of key cell cycle regulatory proteins. Autophagy also prevents HDFs from UV-B-induced nuclear damage as is evident in TUNEL assay and Acridine Orange/Ethidium Bromide co-staining. Salubrinal (an eIF2α phosphatase inhibitor) relieves ER stress response in cells and also significantly alleviates DNA damage and promotes the repair process in UV-B-exposed HDFs. P62-silenced HDFs show enhanced DNA damage response and also disturb the tumor suppressor PTEN/pAKT signaling axis in UV-B-exposed HDFs whereas Atg7-silenced HDFs reveal an unexpected consequence by decreasing the UV-B-induced DNA damage. Taken together, these results suggest that interventional autophagy offers significant protection against UV-B radiation-induced photo-damage and holds great promise in devising it as a suitable therapeutic strategy against skin pathological disorders.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ki Cheon Kim ◽  
Daeshin Kim ◽  
Sang Cheol Kim ◽  
Eunsun Jung ◽  
Deokhoon Park ◽  
...  

This study focused on the protective actions ofEmpetrum nigrumagainst ultraviolet B (UVB) radiation in human HaCaT keratinocytes. An ethyl acetate extract ofE. nigrum(ENE) increased cell viability decreased by exposure to UVB rays. ENE also absorbed UVB radiation and scavenged UVB-induced intracellular reactive oxygen species (ROS) in HaCaT keratinocytes. In addition, ENE shielded HaCaT keratinocytes from damage to cellular components (e.g., peroxidation of lipids, modification of proteins, and breakage of DNA strands) following UVB irradiation. Furthermore, ENE protected against UVB-induced apoptotic cell death, as determined by a reduction in the numbers of apoptotic bodies and sub-G1hypodiploid cells, as well as by the recovery of mitochondrial membrane potential. The results of the current study therefore suggest that ENE safeguards human keratinocytes against UVB-induced cellular damage via the absorption of UVB ray and scavenging of UVB-generated ROS.


2020 ◽  
Vol 20 (7) ◽  
pp. 1010-1014 ◽  
Author(s):  
Dana Filatova ◽  
Christine Cherpak

Background: Hypersensitivity to nickel is a very common cause of allergic contact dermatitis since this metal is largely present in industrial and consumer products as well as in some commonly consumed foods, air, soil, and water. In nickel-sensitized individuals, a cell-mediated delayed hypersensitivity response results in contact to dermatitis due to mucous membranes coming in long-term contact with nickel-containing objects. This process involves the generation of reactive oxidative species and lipid peroxidation-induced oxidative damage. Immunologically, the involvement of T helper (h)-1 and Th-2 cells, as well as the reduced function of T regulatory cells, are of importance. The toxicity, mutagenicity, and carcinogenicity of nickel are attributed to the generation of reactive oxygen species and induction of oxidative damage via lipid peroxidation, which results in DNA damage. Objective: The aim of this research is to identify nutritionally actionable interventions that can intercept nickel-induced cell damage due to their antioxidant capacities. Conclusion: Nutritional interventions may be used to modulate immune dysregulation, thereby intercepting nickel-induced cellular damage. Among these nutritional interventions are a low-nickel diet and an antioxidant-rich diet that is sufficient in iron needed to minimize nickel absorption. These dietary approaches not only reduce the likelihood of nickel toxicity by minimizing nickel exposure but also help prevent oxidative damage by supplying the body with antioxidants that neutralize free radicals.


Author(s):  
Olivier Van Aken

Abstract Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organisation and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signalling, plant development and stress responses. New insights into the organisation and operation of mitochondrial energy systems such as the tricarboxylic acid (TCA) cycle and mitochondrial electron chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signalling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 99
Author(s):  
Shweta Devi ◽  
Vijay Kumar ◽  
Sandeep Kumar Singh ◽  
Ashish Kant Dubey ◽  
Jong-Joo Kim

Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.


2020 ◽  
Vol 71 (1) ◽  
pp. 435-460 ◽  
Author(s):  
Melvin J. Oliver ◽  
Jill M. Farrant ◽  
Henk W.M. Hilhorst ◽  
Sagadevan Mundree ◽  
Brett Williams ◽  
...  

Desiccation of plants is often lethal but is tolerated by the majority of seeds and by vegetative tissues of only a small number of land plants. Desiccation tolerance is an ancient trait, lost from vegetative tissues following the appearance of tracheids but reappearing in several lineages when selection pressures favored its evolution. Cells of all desiccation-tolerant plants and seeds must possess a core set of mechanisms to protect them from desiccation- and rehydration-induced damage. This review explores how desiccation generates cell damage and how tolerant cells assuage the complex array of mechanical, structural, metabolic, and chemical stresses and survive.Likewise, the stress of rehydration requires appropriate mitigating cellular responses. We also explore what comparative genomics, both structural and responsive, have added to our understanding of cellular protection mechanisms induced by desiccation, and how vegetative desiccation tolerance circumvents destructive, stress-induced cell senescence.


2014 ◽  
Vol 34 (8) ◽  
pp. 848-855 ◽  
Author(s):  
I Hwang ◽  
JW Lee ◽  
JS Kim ◽  
HW Gil ◽  
HY Song ◽  
...  

Objective: Self-poisoning with (4-chloro-2-methylphenoxy) acetic acid (MCPA) is a common reason for presentation to hospitals, especially in some Asian countries. We encountered a case of a 76-year-old woman who experienced unconsciousness, shock and respiratory failure after ingesting 100 mL MCPA herbicide. We determined whether the surfactant in the formulation was the chemical responsible for the toxic symptom in this patient. Design: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability and lactate dehydrogenase (LDH) cytotoxicity assays were performed on human brain neuroblastoma SK-N-SH cells. The expressions of 84 genes in 9 categories that are implicated in cellular damage pathways were quantified using an RT2 Profiler™ PCR array on a human neuronal cell line challenged with polyoxyethylene tridecyl ether (PTE). Setting: Pesticide intoxication institute in university hospital. Interventions: Extracorporeal elimination with intravenous lipid emulsion. Measurements: Cell viability and gene expression. Main Results: In the MTT assay, MCPA only minimally decreased cell viability even at concentrations as high as 1 mM. Cells treated with 1-methoxy-2-propanol, dimethylamine and polypropylene glycol exhibited minimal decreases in viability, whilst the viability of cells challenged with PTE decreased dramatically; only 15.5% of cells survived after exposure to 1 µM PTE. Similarly, the results of the LDH cytotoxicity assay showed that MCPA had very low cytotoxicity, whilst cells treated with PTE showed incomparably higher LDH levels ( p < 0.0001). PTE up-regulated the expressions of genes implicated in various cell damage pathways, particularly genes involved in the inflammatory pathway. Conclusions: The surfactant PTE was likely the chemical responsible for the toxic symptom in our patient.


Author(s):  
Kandhan Karthishwaran ◽  
Annadurai Senthilkumar ◽  
Wasef Ayed Alzayadneh ◽  
Mohammed Abdul Mohsen Alyafei

Date palm (Phoenix dactylifera L.) is a major plant grown under natural conditions in the Middle East and is subject to multiple environmental stresses. Increased concentration of atmospheric carbon dioxide (CO2) and ultraviolet-B (UV-B) irradiation in the growth environment can have a high impact on plant carbon accumulation, and the various factors can function in opposite directions or cause additive effects. The objective of the present investigation was to screen UAE date palm for susceptibility to elevated level of CO2, UVB and their combined effect on a date palm variety was assessed in transparent open - top chambers (OTC) conditions in the hot climate of UAE. After the screening of the cultivars, experiment was conducted in an OTC facility and the treatments were given for 120 days. After the treatment of the selected cultivar, content of chlorophyll a, b and total, carotenoids, protein, amino acids, phenol and activities including γ-glutamyl kinase, proline oxidase, a-tocopherol and peroxidases activity were determined. The results revealed that the high concentration of CO2 alone increased the growth parameters, whereas the treatment with UV-B significantly affected the growth of the plant relative to regulation. Enzyme observations have shown that an increase in antioxidant enzymes can affect a defense response to the abiotic stress-induced cellular damage. Further extension of this study with other cultivated varieties, other stress parameters and determination of yield parameters will give scope to identify new stress tolerant cultivars of date palm trees.


Sign in / Sign up

Export Citation Format

Share Document