scholarly journals Development, Characterization and In Vitro Biological Properties of Scaffolds Fabricated From Calcium Phosphate Nanoparticles

2019 ◽  
Vol 20 (7) ◽  
pp. 1790 ◽  
Author(s):  
Lizette Morejón ◽  
José Angel Delgado ◽  
Alexandre Antunes Ribeiro ◽  
Marize Varella de Oliveira ◽  
Eduardo Mendizábal ◽  
...  

Ceramic materials mimic the mineral composition of native bone and feature osteoconductive properties; they are therefore used to regenerate bone tissue. Much research focuses on increasing the porosity and pore interconnectivity of ceramic scaffolds to increase osteoconductivity, cell migration and cell-cell interaction. We aimed to fabricate biocompatible 3D-scaffolds featuring macro- and microporous calcium phosphates with high pore interconnection. Nanoparticles of hydroxyapatite (HA) and calcium deficient hydroxyapatite (CDHA) were synthesized by wet chemical precipitation. Scaffolds were produced from them by the replication polymeric foam technique. Solid content and sintering temperature were varied. Nanoparticles and scaffolds were characterized regarding morphology, chemical and mineral composition, porosity and mechanical properties. Biocompatibility, cell attachment and distribution were evaluated in vitro with human adipose mesenchymal stem cells. Scaffolds with total porosity of 71%–87%, pores in the range of 280–550 µm and connectivity density up to 43 mm−3 were obtained. Smaller pore sizes were obtained at higher sintering temperature. High solid content resulted in a decrease of total porosity but increased interconnectivity. Scaffolds 50HA/50β-TCP featured superior interconnectivity and mechanical properties. They were bioactive and biocompatible. High HA solid content (40 wt.%) in the HA pure scaffolds was negative for cell viability and proliferation, while in the 50HA/50β-TCP composite scaffolds it resulted more biocompatible.

2019 ◽  
Vol 819 ◽  
pp. 9-14 ◽  
Author(s):  
Kanharit Wongsawichai ◽  
Arada Kingkaew ◽  
Aninart Pariyaisut ◽  
Supang Khondee

Bone tissue engineering is an alternative approach to generate bone using biomaterials and cells. Hydroxyapatite (HA) has good biocompatibility, osteoinductivity, and osteoconductivity. However, it has limited utility due to poor mechanical properties and slow degradation rate. To improve mechanical properties and to modify degradation profile, hydroxyapatite was tethered in chitosan (CS) and carboxymethyl cellulose (CMC) complex. Gelatin was incorporated to promote cell attachment and polyvinyl alcohol (PVA) was used to improve mechanical strength of this scaffold. The physico-mechanical and biological properties of these scaffolds were investigated. Fourier transform infrared (FTIR) analysis and X-ray diffraction (XRD) showed the incorporation of hydroxyapatite in polymer matrix. The scaffolds had density, compressive strength, and Young’s modulus in the range of 0.24-0.30 g/cm3, 0.028-0.035 MPa, 0.178-0.560 MPa, respectively. The scaffolds had porosity of 69-91 percent. Higher content of PVA decreased porosity of scaffolds. Scanning electron microscope showed porous microstructure with pore size in the range of 60-183 μm. In vitro test on MC3T3-E1 preosteoblast cells showed negligible cytotoxicity of scaffolds. The data suggested that HA/CS/CMC/gelatin/PVA scaffold has potential applications in bone tissue engineering.


2020 ◽  
Vol 21 (21) ◽  
pp. 8082
Author(s):  
Merve Bas ◽  
Sibel Daglilar ◽  
Nilgun Kuskonmaz ◽  
Cevriye Kalkandelen ◽  
Gokce Erdemir ◽  
...  

Natural calcium phosphates derived from fish wastes are a promising material for biomedical application. However, their sintered ceramics are not fully characterized in terms of mechanical and biological properties. In this study, natural calcium phosphate was synthesized through a thermal calcination process from salmon fish bone wastes. The salmon-derived calcium phosphates (sCaP) were sintered at different temperatures to obtain natural calcium phosphate bioceramics and then were investigated in terms of their microstructure, mechanical properties and biocompatibility. In particular, this work is concerned with the effects of grain size on the relative density and microhardness of the sCaP bioceramics. Ca/P ratio of the sintered sCaP ranged from 1.73 to 1.52 when the sintering temperature was raised from 1000 to 1300 °C. The crystal phase of all the sCaP bioceramics obtained was biphasic and composed of hydroxyapatite (HA) and tricalcium phosphate (TCP). The density and microhardness of the sCaP bioceramics increased in the temperature interval 1000–1100 °C, while at temperatures higher than 1100 °C, these properties were not significantly altered. The highest compressive strength of 116 MPa was recorded for the samples sintered at 1100 °C. In vitro biocompatibility was also examined in the behavior of osteosarcoma (Saos-2) cells, indicating that the sCaP bioceramics had no cytotoxicity effect. Salmon-derived biphasic calcium phosphates (BCP) have the potential to contribute to the development of bone substituted materials.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 203 ◽  
Author(s):  
Chun-Hao Tsai ◽  
Chih-Hung Hung ◽  
Che-Nan Kuo ◽  
Cheng-Yu Chen ◽  
Yu-Ning Peng ◽  
...  

Recently, cases of bone defects have been increasing incrementally. Thus, repair or replacement of bone defects is gradually becoming a huge problem for orthopaedic surgeons. Three-dimensional (3D) scaffolds have since emerged as a potential candidate for bone replacement, of which titanium (Ti) alloys are one of the most promising candidates among the metal alloys due to their low cytotoxicity and mechanical properties. However, bioactivity remains a problem for metal alloys, which can be enhanced using simple immersion techniques to coat bioactive compounds onto the surface of Ti–6Al–4V scaffolds. In our study, we fabricated magnesium-calcium silicate (Mg–CS) and chitosan (CH) compounds onto Ti–6Al–4V scaffolds. Characterization of these surface-modified scaffolds involved an assessment of physicochemical properties as well as mechanical testing. Adhesion, proliferation, and growth of human Wharton’s Jelly mesenchymal stem cells (WJMSCs) were assessed in vitro. In addition, the cell attachment morphology was examined using scanning electron microscopy to assess adhesion qualities. Osteogenic and mineralization assays were conducted to assess osteogenic expression. In conclusion, the Mg–CS/CH coated Ti–6Al–4V scaffolds were able to exhibit and retain pore sizes and their original morphologies and architectures, which significantly affected subsequent hard tissue regeneration. In addition, the surface was shown to be hydrophilic after modification and showed mechanical strength comparable to natural bone. Not only were our modified scaffolds able to match the mechanical properties of natural bone, it was also found that such modifications enhanced cellular behavior such as adhesion, proliferation, and differentiation, which led to enhanced osteogenesis and mineralization downstream. In vivo results indicated that Mg–CS/CH coated Ti–6Al–4V enhances the bone regeneration and ingrowth at the critical size bone defects of rabbits. These results indicated that the proposed Mg–CS/CH coated Ti–6Al–4V scaffolds exhibited a favorable, inducive micro-environment that could serve as a promising modification for future bone tissue engineering scaffolds.


Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 261-266 ◽  
Author(s):  
L. P. Silva ◽  
M. D. P. Ribeiro ◽  
E. S. Trichês ◽  
M. Motisuke

Abstract Calcium phosphate cements (CPCs) are potential materials for repairing bone defects, mainly due to their excellent biocompatibility and osteoconductivity. Nevertheless, their low mechanical properties limit their usage in clinical applications. The gelatin addition may improve the mechanical and biological properties of CPCs, but their solubility in water may increase the porosity of the cement during degradation. Thus, the aim of this work was to investigate the influence of gelatin on the setting time, compressive strength and degradation rate of a brushite cement. CPCs were prepared with the addition of 0, 5, 10 and 20 wt% of gelatin powder in the solid phase of the cement. The results indicated that the setting time increased with gelatin. Furthermore, cement with 20 wt% of gelatin had an initial compressive strength of 14.1±1.8 MPa while cement without gelatin had 4.5±1.2 MPa. The weight loss, morphology and compressive strength were evaluated after degradation in Ringer’s solution. According to the weight loss data, gelatin was eliminated of samples during degradation. It was concluded that the presence of gelatin improved CPCs mechanical properties; however, as degradation in Ringer’s solution evolved, cement compressive strength decreased due to gelatin dissolution and, consequently, an increase in sample porosity.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 61 ◽  
Author(s):  
Yannan Liu ◽  
Juan Gu ◽  
Daidi Fan

A novel, three-dimensional, porous, human-like collagen (HLC)/nano-hydroxyapatite (n-HA) scaffold cross-linked by 1,2,7,8-diepoxyoctane (DEO) was successfully fabricated, which showed excellent mechanical and superior biological properties for bone tissue regeneration in this study. The physicochemical characterizations of different n-HA/HLC/DEO (nHD) scaffolds were investigated by determining the morphology, compression stress, elastic modulus, Young’s modulus and enzymatic hydrolysis behavior in vitro. The results demonstrated that nHD-2 and nHD-3 scaffolds showed superior mechanical properties and resistance to enzymatic hydrolysis compared to nHD-1 scaffolds. The cell viability, live cell staining and cell adhesion analysis results demonstrated that nHD-2 scaffolds exhibited low cytotoxicity and excellent cytocompatibility compared with nHD-1 and nHD-3 scaffolds. Furthermore, subcutaneous injections of nHD-2 scaffolds in rabbits produced superior anti-biodegradation effects and histocompatibility compared with injections of nHD-1 and nHD-3 scaffolds after 1, 2 and 4 weeks. In addition, the repair of bone defects in rabbits demonstrated that nHD-2 scaffolds presented an improved ability for guided bone regeneration and reconstruction compared to commercially available bone scaffold composite hydroxyapatite/collagen (HC). Collectively, the results show that nHD-2 scaffolds show promise for application in bone tissue engineering due to their excellent mechanical properties, anti-biodegradation, anti-biodegradation, biocompatibility and bone repair effects.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2711
Author(s):  
Ana S. Neto ◽  
Daniela Brazete ◽  
José M.F. Ferreira

The combination of calcium phosphates with bioactive glasses (BG) has received an increased interest in the field of bone tissue engineering. In the present work, biphasic calcium phosphates (BCP) obtained by hydrothermal transformation of cuttlefish bone (CB) were coated with a Sr-, Mg- and Zn-doped sol-gel derived BG. The scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The initial CB structure was maintained after hydrothermal transformation (HT) and the scaffold functionalization did not jeopardize the internal structure. The results of the in-vitro bioactivity after immersing the BG coated scaffolds in simulated body fluid (SBF) for 15 days showed the formation of apatite on the surface of the scaffolds. Overall, the functionalized CB derived BCP scaffolds revealed promising properties, but further assessment of the in-vitro biological properties is needed before being considered for their use in bone tissue engineering applications.


2021 ◽  
Vol 22 (22) ◽  
pp. 12267
Author(s):  
Soher N. Jayash ◽  
Paul R. Cooper ◽  
Richard M. Shelton ◽  
Sarah A. Kuehne ◽  
Gowsihan Poologasundarampillai

Hydrogels constructed from naturally derived polymers provide an aqueous environment that encourages cell growth, however, mechanical properties are poor and degradation can be difficult to predict. Whilst, synthetic hydrogels exhibit some improved mechanical properties, these materials lack biochemical cues for cells growing and have limited biodegradation. To produce hydrogels that support 3D cell cultures to form tissue mimics, materials must exhibit appropriate biological and mechanical properties. In this study, novel organic-inorganic hybrid hydrogels based on chitosan and silica were prepared using the sol-gel technique. The chemical, physical and biological properties of the hydrogels were assessed. Statistical analysis was performed using One-Way ANOVAs and independent-sample t-tests. Fourier transform infrared spectroscopy showed characteristic absorption bands including amide II, Si-O and Si-O-Si confirming formation of hybrid networks. Oscillatory rheometry was used to characterise the sol to gel transition and viscoelastic behaviour of hydrogels. Furthermore, in vitro degradation revealed both chitosan and silica were released over 21 days. The hydrogels exhibited high loading efficiency as total protein loading was released in a week. There were significant differences between TC2G and C2G at all-time points (p < 0.05). The viability of osteoblasts seeded on, and encapsulated within, the hydrogels was >70% over 168 h culture and antimicrobial activity was demonstrated against Pseudomonas aeruginosa and Enterococcus faecalis. The hydrogels developed here offer alternatives for biopolymer hydrogels for biomedical use, including for application in drug/cell delivery and for bone tissue engineering.


2019 ◽  
Vol 34 (2) ◽  
pp. 131-149 ◽  
Author(s):  
KR Remya ◽  
Sunitha Chandran ◽  
Annie John ◽  
P Ramesh

This study explores the potential of electrospun polycaprolactone scaffolds for the controlled delivery of pamidronate disodium pentahydrate, an amino-bisphosphonate drug used for the treatment of osteoporosis. Major drawbacks associated with oral bisphosphonate therapy are its poor bioavailability and gastrointestinal side-effects. Herein, we used polycaprolactone, a well-known Food and Drug Administration–approved biomaterial, as the delivering vehicle for pamidronate disodium pentahydrate. Scaffolds based on polycaprolactone with three different formulations (1, 3, and 5 wt%) of pamidronate disodium pentahydrate were fabricated by electrospinning, and a comparative study was carried out to evaluate the effect of pamidronate disodium pentahydrate on physico-mechanical and biological properties of polycaprolactone. The observations from Fourier-transform infrared spectra and thermogravimetric analysis confirmed the successful incorporation of pamidronate disodium pentahydrate into polycaprolactone scaffolds. The study also revealed that pamidronate disodium pentahydrate–loaded scaffolds exhibited improved hydrophilicity as well as superior mechanical properties as depicted by the contact angle measurements and mechanical property evaluation. In vitro drug release studies of pamidronate disodium pentahydrate–loaded scaffolds in phosphate buffer saline at 37°C showed that all the scaffolds exhibited controlled release of pamidronate disodium pentahydrate. In vitro degradation studies further revealed that pamidronate disodium pentahydrate incorporated polycaprolactone scaffolds degraded faster as depicted by the fiber rupture and drop in mechanical properties. In vitro cell culture studies using human osteosarcoma cell lines demonstrated that pamidronate disodium pentahydrate–loaded polycaprolactone scaffolds were cytocompatible. The human osteosarcoma cells had favorable interaction with the scaffolds, and the viability of adhered cells was depicted by the fluorescein diacetate/propidium iodide staining. MTT assay further revealed enhanced cell viability on PCL/PDS3 scaffolds. Our findings bespeak that the pamidronate disodium pentahydrate–encapsulated electrospun polycaprolactone scaffolds have the potential to serve as a promising drug delivery vehicle for osteoporotic bone defect repair.


2016 ◽  
Vol 696 ◽  
pp. 171-176
Author(s):  
Anke Bernstein ◽  
Norbert Suedkamp ◽  
Hermann Otto Mayr ◽  
Rainer Gadow ◽  
Irina Arhire ◽  
...  

The colonization of biomaterials with bacteria represents the main cause of implant-associated infections. Both an antibiotic prophylaxis and a faster osteointegration can be obtained by incorporation of bactericidal active metals in degradable CaP coatings. At present there is no reliable method on the basis of thermal spraying to get thin homogeneous layers containing silver, copper and bismuth in bacteriostatic / bactericidal concentrations. The aim of the study was the development and optimization of high-velocity suspension flame spraying (HVSFS) process for producing thin resorbable bioactive ceramics coatings on the basis of degradable calcium phosphates. In these layers the bacteriostatic / bactericidal effective metal copper should be integrated. Cells were grown on the materials for 3, 7, 14, and 21 days. Live/dead assay was used to measure cell viability. The in vitro cytotoxicity was determined by the microculture tetrazolium (WST) assay. Cell morphology, cell attachment, and cell spreading were investigated using laser scanning microscopy and raster scanning electron microscopy. All substrates supported sufficient cellular growth for 21 days and showed no cytotoxicity. On each material an identical cell colonisation of well communicating, polygonal, vital cells was verified


2018 ◽  
Vol 33 (5) ◽  
pp. 529-542 ◽  
Author(s):  
Shirin Ghafaralahi ◽  
Mehdi Ebrahimian-Hosseinabadi ◽  
Anousheh Zargar Kharazi

In this study, mechanical, electrical, physical, and biological properties of polymeric matrixes comprising poly(glycerol-sebacate) (PGS) and poly(caprolactone) (PCL) with various weight ratio of PGS:PCL (1:3 and 1:1) were evaluated in order to apply as nerve guidance conduit. For this purpose, synthetic PGS pre-polymer was acquired using poly-condensation of glycerol and sebacic acid and characterized by attenuated total reflection-fourier transformed infrared (ATR-FTIR) and X-ray diffraction (XRD) spectroscopies. Furthermore, the effect of 1 wt% graphene (Gr) Nano sheets incorporation as filler, was investigated. Blending PGS with PCL significantly improves the hydrophilicity of the samples and improves cells attachment; however, their mechanical properties decreased dramatically. Presence of Gr within the polymeric matrix, significantly increased elastic modulus and tensile strength, which is possibly attributed to its superior mechanical properties and high aspect of ratio. Moreover, aforementioned polymeric matrixes, turned to conductive membranes by addition of Gr, which affected drastically on their biological properties; that way, 3, 4, 5-dimethylthiazol-2, 5-diphenyl tetrazolium bromide assay elucidated that only addition of 1 wt% Gr to the polymeric films resulted in improved cell survival and cell attachment for 7 days of cell seeding. In addition, cell attachment was enhanced considerably by increasing PGS up to 50 wt%, due to positive role of PGS on contact angle reduction. Therefore, the nano-composite film (50PGS-50PCL-1Gr) can be a promising substrate to use as a nerve guidance conduit.


Sign in / Sign up

Export Citation Format

Share Document