scholarly journals Editorial of Special Issue “The Interplay of Microbiome and Immune Response in Health and Diseases”

2019 ◽  
Vol 20 (15) ◽  
pp. 3708 ◽  
Author(s):  
Amedeo Amedei ◽  
Gwendolyn Barceló-Coblijn

Increasing data suggests and supports the idea that the gut microbiota (GM) modulates different host pathways, playing a crucial role in human physiology and consequently impacting in the development of some pathologic conditions [...]

2021 ◽  
Author(s):  
Aaron C. Ericsson ◽  
Craig L. Franklin

AbstractJust as the gut microbiota (GM) is now recognized as an integral mediator of environmental influences on human physiology, susceptibility to disease, and response to pharmacological intervention, so too does the GM of laboratory mice affect the phenotype of research using mouse models. Multiple experimental factors have been shown to affect the composition of the GM in research mice, as well as the model phenotype, suggesting that the GM represents a major component in experimental reproducibility. Moreover, several recent studies suggest that manipulation of the GM of laboratory mice can substantially improve the predictive power or translatability of data generated in mouse models to the human conditions under investigation. This review provides readers with information related to these various factors and practices, and recommendations regarding methods by which issues with poor reproducibility or translatability can be transformed into discoveries.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sang-Kap Han ◽  
Yeon-Jeong Shin ◽  
Dong-Yeon Lee ◽  
Kyung Min Kim ◽  
Seo-Jin Yang ◽  
...  

Abstract Background Gut microbiota closely communicate in the immune system to maintain a balanced immune homeostasis in the gastrointestinal tract of the host. Oral administration of probiotics modulates gut microbiota composition. In the present study, we isolated Lactobacillus rhamnosus HDB1258, which induced tumor necrosis factor (TNF)-α and interleukin (IL)-10 expression in macrophages, from the feces of breastfeeding infants and examined how HDB1258 could regulate the homeostatic immune response in mice with or without lipopolysaccharide (LPS)-induced systemic inflammation. Results Oral administration of HDB1258 significantly increased splenic NK cell cytotoxicity, peritoneal macrophage phagocytosis, splenic and colonic TNF-α expression, TNF-α to IL-10 expression ratio, and fecal IgA level in control mice, while Th1 and Treg cell differentiation was not affected in the spleen. However, HDB1258 treatment significantly suppressed peritoneal macrophage phagocytosis and blood prostaglandin E2 level in mice with LPS-induced systemic inflammation. Its treatment increased LPS-suppressed ratios of Treg to Th1 cell population, Foxp3 to T-bet expression, and IL-10 to TNF-α expression. Oral administration of HDB1258 significantly decreased LPS-induced colon shortening, myeloperoxidase activity and NF-κB+/CD11c+ cell population in the colon, while the ratio of IL-10 to TNF-α expression increased. Moreover, HDB1258 treatment shifted gut microbiota composition in mice with and without LPS-induced systemic inflammation: it increased the Cyanobacteria and PAC000664_g (belonging to Bacteroidetes) populations and reduced Deferribacteres and EU622763_s group (belonging to Bacteroidetes) populations. In particular, PAC001066_g and PAC001072_s populations were negatively correlated with the ratio of IL-10 to TNF-α expression in the colon, while the PAC001070_s group population was positively correlated. Conclusions Oral administered HDB1258 may enhance the immune response by activating innate immunity including to macrophage phagocytosis and NK cell cytotoxicity in the healthy host and suppress systemic inflammation in the host with inflammation by the modulation of gut microbiota and IL-10 to TNF-α expression ratio in immune cells.


2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


2011 ◽  
Vol 1 (5) ◽  
pp. 1-2
Author(s):  
Lavkush Dwivedi

Infectious diseases and consequent immune imbalancesare major constraint in human health managementthroughout the world. However, in recentdecades enormous efforts have been made to elucidatethe immunomodulatory approaches againstinfectious diseases. Immunomodulation is a therapeuticapproach in which we try to intervene inauto regulating processes of the defense system toadjust the immune response at a desired level.The present special issue on cutting edge issues inImmunomodulation like Immune stimulation, Immunesuppression, Immune potentiating and immunereinforcement summarizes our current understandingof this complex mosaic. The accompanyingselection of recent articles from across theworld provides further insight into this topic. 


2017 ◽  
Author(s):  
Ana-Carolina Oliveira ◽  
João Francisco Gomes-Neto ◽  
Carlos-Henrique Dantas Barbosa ◽  
Alessandra Granato ◽  
Bernardo S Reis ◽  
...  

Author(s):  
Elvira Estorninos ◽  
Rachel B Lawenko ◽  
Eisel Palestroque ◽  
Norbert Sprenger ◽  
Jalil Benyacoub ◽  
...  

Abstract Background Bovine milk-derived oligosaccharides (MOS) containing primarily galacto-oligosaccharides with inherent levels of sialylated oligosaccharides can be added to infant formula to enhance the oligosaccharide profile. Objective To investigate the effects of a MOS-supplemented infant formula on gut microbiota and intestinal immunity. Methods In a double-blind, randomized, controlled trial, healthy-term formula-fed infants aged 21–26 days either received an intact protein cow's milk-based formula (control group, CG, n = 112) or the same formula containing 7.2 g MOS/L (experimental group, EG, n = 114) until age 6 months. Exclusively human milk-fed infants (HFI, n = 70) from an observational study served as reference. Fecal samples collected at baseline, 2.5 and 4 months of age were assessed for microbiota (16S ribosomal ribonucleic acid—based approaches), metabolites and biomarkers of gut health and immune response. Results At age 2.5 and 4 months, redundancy analysis (P = 0.002) and average phylogenetic distance (P < 0.05) showed that the overall microbiota composition in EG was different from CG and closer to that of HFI. Similarly, EG caesarean-born infants were different from CG caesarean- or vaginally-born infants and approaching HFI vaginally-born infants. Relative bifidobacteria abundance was higher in EG vs. CG (P < 0.05) approaching HFI. At age 4 months, counts of Clostridioides difficile and Clostridium perfringens were ∼90% (P < 0.001) and ∼65% (P < 0.01) lower in EG vs. CG, respectively. Mean (95%CI) fecal secretory immunoglobulin A (IgA) in EG was twice that of CG [70 (57,85) vs. 34 (28,42) mg/g, P < 0.001] and closer to HFI. Fecal oral polio vaccine-specific IgA was ∼50% higher in EG vs. CG (P = 0.065). Compared to CG, EG and HFI had lower fecal calcium excretion (by ∼30%) and fecal pH (P < 0.001), and higher lactate concentration (P < 0.001). Conclusions Infant formula with MOS shifts the gut microbiota and metabolic signature closer to that of HFI, has a strong bifidogenic effect, reduces fecal pathogens, and improves intestinal immune response.


2021 ◽  
Vol 8 ◽  
Author(s):  
Teketay Wassie ◽  
Zhuang Lu ◽  
Xinyi Duan ◽  
Chunyan Xie ◽  
Kefyalew Gebeyew ◽  
...  

Marine algae polysaccharides have been shown to regulate various biological activities, such as immune modulation, antioxidant, antidiabetic, and hypolipidemic. However, litter is known about the interaction of these polysaccharides with the gut microbiota. This study aimed to evaluate the effects of marine algae Enteromorpha (Ulva) prolifera polysaccharide (EP) supplementation on growth performance, immune response, and caecal microbiota of broiler chickens. A total of 200 1-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with ten replications of ten chickens in each replication. The dietary treatments consisted of the control group (fed basal diet), and EP group (received diet supplemented with 400 mg EP/kg diet). Results showed that chickens fed EP exhibited significantly higher (P < 0.05) body weight and average daily gain than the chicken-fed basal diet. In addition, significantly longer villus height, shorter crypt depth, and higher villus height to crypt depth ratio were observed in the jejunal and ileal tissues of chickens fed EP. EP supplementation upregulated the mRNA expression of NF-κB, TLR4, MyD88, IL-2, IFN-α, and IL-1β in the ileal and jejunal tissues (P < 0.05). Besides, we observed significantly higher (P < 0.05) short-chain volatile fatty acids (SCFAs) levels in the caecal contents of the EP group than in the control group. Furthermore, 16S-rRNA analysis revealed that EP supplementation altered gut microbiota and caused an abundance shift at the phylum and genus level in broiler chicken. Interestingly, we observed an association between microbiota and SCFAs production. Overall, this study demonstrated that supplementation of diet with EP promotes growth performance, improves intestinal immune response and integrity, and modulates the caecal microbiota of broiler chickens. This study highlighted the application of marine algae polysaccharides as an antibiotic alternative for chickens. Furthermore, it provides insight to develop marine algae polysaccharide-based functional food and therapeutic agent.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Satya Prakash ◽  
Catherine Tomaro-Duchesneau ◽  
Shyamali Saha ◽  
Arielle Cantor

The gut microbiota plays a crucial role in maintaining health. Alterations of the gut bacterial population have been associated with a number of diseases. Past and recent studies suggest that one can positively modify the contents of the gut microbiota by introducing prebiotics, probiotics, synbiotics, and other therapeutics. This paper focuses on probiotic modulation of the gut microbiota by their delivery to the lower gastrointestinal tract (GIT). There are numerous obstacles to overcome before microorganisms can be utilized as therapeutics. One important limitation is the delivery of viable cells to the lower GIT without a significant loss of cell viability and metabolic features through the harsh conditions of the upper GIT. Microencapsulation has been shown to overcome this, with various types of microcapsules available for resolving this limitation. This paper discusses the gut microbiota and its role in disease, with a focus on microencapsulated probiotics and their potentials and limitations.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yiqin Deng ◽  
Yaqiu Zhang ◽  
Haoxiang Chen ◽  
Liwen Xu ◽  
Qian Wang ◽  
...  

Vibrio harveyi causes vibriosis in nearly 70% of grouper (Epinephelus sp.), seriously limiting grouper culture. As well as directly inhibiting pathogens, the gut microbiota plays critical roles in immune homeostasis and provides essential health benefits to its host. However, there is still little information about the variations in the immune response to V. harveyi infection and the gut microbiota of grouper. To understand the virulence mechanism of V. harveyi in the pearl gentian grouper, we investigated the variations in the pathological changes, immune responses, and gut bacterial communities of pearl gentian grouper after exposure to differently virulent V. harveyi strains. Obvious histopathological changes were detected in heart, kidney, and liver. In particular, nodules appeared and huge numbers of V. harveyi cells colonized the liver at 12 h postinfection (hpi) with highly virulent V. harveyi. Although no V. harveyi was detected in the gut, the infection simultaneously induced a gut-liver immune response. In particular, the expression of 8 genes associated with cellular immune processes, including genes encoding inflammatory cytokines and receptors, and pattern recognition proteins, was markedly induced by V. harveyi infection, especially with the highly virulent V. harveyi strain. V. harveyi infection also induced significant changes in gut bacterial community, in which Vibrio and Photobacterium increased but Bradyrhizobium, Lactobacillus, Blautia, and Faecalibaculum decreased in the group infected with the highly virulent strain, with accounting for 82.01% dissimilarity. Correspondingly, four bacterial functions related to bacterial pathogenesis were increased by infection with highly virulent V. harveyi, whereas functions involving metabolism and genetic information processing were reduced. These findings indicate that V. harveyi colonizes the liver and induces a gut-liver immune response that substantially disrupts the composition of and interspecies interactions in the bacterial community in fish gut, thereby altering the gut-microbiota-mediated functions and inducing fish death.


Author(s):  
William D Miller ◽  
Robert Keskey ◽  
John C Alverdy

Abstract Although sepsis has been characterized as a dysregulated immune response to an ongoing or suspected infection, the role of the microbiome as a key influencer of the septic response is emerging. The unavoidable disruption of the microbiome while treating sepsis with antibiotics can itself result in immune system dysregulation, further exacerbating the course and outcome of sepsis. Alterations in the gut microbiome as a result of sepsis and its treatment have been implicated in the organ dysfunction typical of sepsis across a wide variety of tissues including the lung, kidney and brain. A number of microbiota directed interventions are currently under investigation in the setting of sepsis including fecal transplant, the administration of dietary fiber in enteral feeding products and the use of antibiotic scavengers that are directed at attenuating the effects of antibiotics on the gut microbiota while allowing them to concentrate at the primary sites of infection. Taken together, the emerging role of the gut microbiome in sepsis touches various elements of the pathophysiology of sepsis and its treatment, and provides yet another reason to consider the judicious use of antibiotics via antibiotic stewardship programs.


Sign in / Sign up

Export Citation Format

Share Document