scholarly journals Autophagy is Activated In Vivo during Trimethyltin-Induced Apoptotic Neurodegeneration: A Study in the Rat Hippocampus

2019 ◽  
Vol 21 (1) ◽  
pp. 175 ◽  
Author(s):  
Sabrina Ceccariglia ◽  
Alessandra Alvino ◽  
Aurora Del Fà ◽  
Ornella Parolini ◽  
Fabrizio Michetti ◽  
...  

Trimethyltin (TMT) is an organotin compound known to produce significant and selective neuronal degeneration and reactive astrogliosis in the rodent central nervous system. Autophagy is the main cellular mechanism for degrading and recycling protein aggregates and damaged organelles, which in different stress conditions, such as starvation, generally improves cell survival. Autophagy is documented in several pathologic conditions, including neurodegenerative diseases. This study aimed to investigate the autophagy and apoptosis signaling pathways in hippocampal neurons of TMT-treated (Wistar) rats to explore molecular mechanisms involved in toxicant-induced neuronal injury. The microtubule-associated protein light chain (LC3, autophagosome marker) and sequestosome1 (SQSTM1/p62) (substrate of autophagy-mediated degradation) expressions were examined by Western blotting at different time points after intoxication. The results demonstrate that the LC3 II/I ratio significantly increased at 3 and 5 days, and that p62 levels significantly decreased at 7 and 14 days. Immunofluorescence images of LC3/neuronal nuclear antigen (NeuN) showed numerous strongly positive LC3 neurons throughout the hippocampus at 3 and 5 days. The terminal deoxynucleotidyltransferase dUTP nick end labeling (TUNEL) assay indicated an increase in apoptotic cells starting from 5 days after treatment. In order to clarify apoptotic pathway, immunofluorescence images of apoptosis-inducing factor (AIF)/NeuN did not show nuclear translocation of AIF in neurons. Increased expression of cleaved Caspase-3 was revealed at 5–14 days in all hippocampal regions by Western blotting and immunohistochemistry analyses. These data clearly demonstrate that TMT intoxication induces a marked increase in both autophagy and caspase-dependent apoptosis, and that autophagy occurring just before apoptosis could have a potential role in neuronal loss in this experimental model of neurodegeneration.

2013 ◽  
Vol 210 (12) ◽  
pp. 2553-2567 ◽  
Author(s):  
Christine D. Pozniak ◽  
Arundhati Sengupta Ghosh ◽  
Alvin Gogineni ◽  
Jesse E. Hanson ◽  
Seung-Hye Lee ◽  
...  

Excessive glutamate signaling is thought to underlie neurodegeneration in multiple contexts, yet the pro-degenerative signaling pathways downstream of glutamate receptor activation are not well defined. We show that dual leucine zipper kinase (DLK) is essential for excitotoxicity-induced degeneration of neurons in vivo. In mature neurons, DLK is present in the synapse and interacts with multiple known postsynaptic density proteins including the scaffolding protein PSD-95. To examine DLK function in the adult, DLK-inducible knockout mice were generated through Tamoxifen-induced activation of Cre-ERT in mice containing a floxed DLK allele, which circumvents the neonatal lethality associated with germline deletion. DLK-inducible knockouts displayed a modest increase in basal synaptic transmission but had an attenuation of the JNK/c-Jun stress response pathway activation and significantly reduced neuronal degeneration after kainic acid–induced seizures. Together, these data demonstrate that DLK is a critical upstream regulator of JNK-mediated neurodegeneration downstream of glutamate receptor hyper-activation and represents an attractive target for the treatment of indications where excitotoxicity is a primary driver of neuronal loss.


1991 ◽  
Vol 11 (1) ◽  
pp. 401-411
Author(s):  
S Cuthill ◽  
A Wilhelmsson ◽  
L Poellinger

To reconstitute the molecular mechanisms underlying the cellular response to soluble receptor ligands, we have exploited a cell-free system that exhibits signal- (dioxin-)induced activation of the latent cytosolic dioxin receptor to an active DNA-binding species. The DNA-binding properties of the in vitro-activated form were qualitatively indistinguishable from those of in vivo-activated nuclear receptor extracted from dioxin-treated cells. In vitro activation of the receptor by dioxin was dose dependent and was mimicked by other dioxin receptor ligands in a manner that followed the rank order of their relative affinities for the receptor in vitro and their relative potencies to induce target gene transcription in vivo. Thus, in addition to triggering the initial release of inhibition of DNA binding and presumably allowing nuclear translocation, the ligand appears to play a crucial role in the direct control of the level of functional activity of a given ligand-receptor complex.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yunqi Zhu ◽  
Xiangmin Tong ◽  
Ying Wang ◽  
Xiaoya Lu

AbstractAcute myeloid leukemia (AML) is an aggressive and heterogeneous clonal hematologic malignancy for which novel therapeutic targets and strategies are required. Emerging evidence suggests that WTIP is a candidate tumor suppressor. However, the molecular mechanisms of WTIP in leukemogenesis have not been explored. Here, we report that WTIP expression is significantly reduced both in AML cell lines and clinical specimens compared with normal controls, and low levels of WTIP correlate with decreased overall survival in AML patients. Overexpression of WTIP inhibits cell proliferation and induces apoptosis both in vitro and in vivo. Mechanistic studies reveal that the apoptotic function of WTIP is mediated by upregulation and nuclear translocation of FOXO3a, a member of Forkhead box O (FOXO) transcription factors involved in tumor suppression. We further demonstrate that WTIP interacts with FOXO3a and transcriptionally activates FOXO3a. Upon transcriptional activation of FOXO3a, its downstream target PUMA is increased, leading to activation of the intrinsic apoptotic pathway. Collectively, our results suggest that WTIP is a tumor suppressor and a potential target for therapeutic intervention in AML.


2020 ◽  
Vol 12 (565) ◽  
pp. eaay0399
Author(s):  
Changyoun Kim ◽  
Alexandria Beilina ◽  
Nathan Smith ◽  
Yan Li ◽  
Minhyung Kim ◽  
...  

Synucleinopathies are neurodegenerative disorders characterized by abnormal α-synuclein deposition that include Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. The pathology of these conditions also includes neuronal loss and neuroinflammation. Neuron-released α-synuclein has been shown to induce neurotoxic, proinflammatory microglial responses through Toll-like receptor 2, but the molecular mechanisms involved are poorly understood. Here, we show that leucine-rich repeat kinase 2 (LRRK2) plays a critical role in the activation of microglia by extracellular α-synuclein. Exposure to α-synuclein was found to enhance LRRK2 phosphorylation and activity in mouse primary microglia. Furthermore, genetic and pharmacological inhibition of LRRK2 markedly diminished α-synuclein–mediated microglial neurotoxicity via lowering of tumor necrosis factor–α and interleukin-6 expression in mouse cultures. We determined that LRRK2 promoted a neuroinflammatory cascade by selectively phosphorylating and inducing nuclear translocation of the immune transcription factor nuclear factor of activated T cells, cytoplasmic 2 (NFATc2). NFATc2 activation was seen in patients with synucleinopathies and in a mouse model of synucleinopathy, where administration of an LRRK2 pharmacological inhibitor restored motor behavioral deficits. Our results suggest that modulation of LRRK2 and its downstream signaling mediator NFATc2 might be therapeutic targets for treating synucleinopathies.


Brain ◽  
2020 ◽  
Vol 143 (6) ◽  
pp. 1731-1745 ◽  
Author(s):  
Melanie Ramberger ◽  
Antonio Berretta ◽  
Jeanne M M Tan ◽  
Bo Sun ◽  
Sophia Michael ◽  
...  

Abstract Autoantibodies against leucine-rich glioma inactivated 1 (LGI1) are found in patients with limbic encephalitis and focal seizures. Here, we generate patient-derived monoclonal antibodies (mAbs) against LGI1. We explore their sequences and binding characteristics, plus their pathogenic potential using transfected HEK293T cells, rodent neuronal preparations, and behavioural and electrophysiological assessments in vivo after mAb injections into the rodent hippocampus. In live cell-based assays, LGI1 epitope recognition was examined with patient sera (n = 31), CSFs (n = 11), longitudinal serum samples (n = 15), and using mAbs (n = 14) generated from peripheral B cells of two patients. All sera and 9/11 CSFs bound both the leucine-rich repeat (LRR) and the epitempin repeat (EPTP) domains of LGI1, with stable ratios of LRR:EPTP antibody levels over time. By contrast, the mAbs derived from both patients recognized either the LRR or EPTP domain. mAbs against both domain specificities showed varied binding strengths, and marked genetic heterogeneity, with high mutation frequencies. LRR-specific mAbs recognized LGI1 docked to its interaction partners, ADAM22 and ADAM23, bound to rodent brain sections, and induced internalization of the LGI1-ADAM22/23 complex in both HEK293T cells and live hippocampal neurons. By contrast, few EPTP-specific mAbs bound to rodent brain sections or ADAM22/23-docked LGI1, but all inhibited the docking of LGI1 to ADAM22/23. After intrahippocampal injection, and by contrast to the LRR-directed mAbs, the EPTP-directed mAbs showed far less avid binding to brain tissue and were consistently detected in the serum. Post-injection, both domain-specific mAbs abrogated long-term potentiation induction, and LRR-directed antibodies with higher binding strengths induced memory impairment. Taken together, two largely dichotomous populations of LGI1 mAbs with distinct domain binding characteristics exist in the affinity matured peripheral autoantigen-specific memory pools of individuals, both of which have pathogenic potential. In human autoantibody-mediated diseases, the detailed characterization of patient mAbs provides a valuable method to dissect the molecular mechanisms within polyclonal populations.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 348 ◽  
Author(s):  
Moustafa Fathy ◽  
Motonori Okabe ◽  
Heba M. Saad Eldien ◽  
Toshiko Yoshida

For hepatic failure, stem cell transplantation has been chosen as an alternative therapy, especially for mesenchymal stem cells (MSCs). The aim of this study was to investigate the effect of eugenol (EUG) on the in vivo antifibrotic activity of adipose tissue-derived MSCs (AT-MSCs) and the underlying mechanism. After characterization of MSCs, rats were divided into five groups, Group 1 (normal control), Group 2 (CCl4), Group 3 (CCl4 + AT-MSCs), Group 4 (CCl4 + EUG) and Group 5 (CCl4 + AT-MSCs + EUG). Biochemical and histopathological investigations were performed. Furthermore, expression of type 1 collagen, α-SMA, TGF-β1, Smad3 and P-Smad3 was estimated. Compared to the single treatment with AT-MSCs, the combination treatment of the fibrotic rats with AT-MSCs and EUG significantly improved the plasma fibrinogen concentration, IL-10 level and proliferating cell nuclear antigen expression, and also significantly decreased the serum levels of liver enzymes, IL-6, IL-1β, TNF-α, type III collagen, hyaluronic acid, hydroxyproline and the TGF-β growth factor. Furthermore, the combination treatment significantly decreased the hepatic expression of fibrotic markers genes (Type 1 collagen and α-SMA) and proteins (α-SMA, TGF-β1 and phospho-Smad3) more than the treatment with AT-MSCs alone. We demonstrated that the combination treatment with EUG and AT-MSCs strongly inhibited the advancement of CCl4-induced hepatic fibrosis, compared with AT-MSCs alone, through TGF-β/Smad pathway inhibition. This approach is completely novel, so more investigations are necessary to improve our perception of the underlying molecular mechanisms accountable for the effects of EUG on the antifibrotic potential of AT-MSCs.


2018 ◽  
Vol 49 (6) ◽  
pp. 2382-2395 ◽  
Author(s):  
Qing Ou-yang ◽  
Xuzhi He ◽  
Anqi Yang ◽  
Bing Li ◽  
Minhui Xu

Background/Aims: Glioblastoma is the most common and aggressive brain tumor and carries a poor prognosis. Previously, we found that neurotensin receptor 1 (NTSR1) contributes to glioma progression, but the underlying mechanisms of NTSR1 in glioblastoma invasion remain to be clarified. The aim of this study was to investigate the molecular mechanisms of NTSR1 in glioblastoma invasion. Methods: Cell migration and invasion were evaluated using wound-healing and transwell assays. Cell proliferation was detected using CCK-8. The expression of NTSR1, Jun, and suppressor of cytokine signaling 6 (SOCS6) was detected using western blotting. The expression of miR-494 was detected by Quantitative real-time PCR. Chromatin immunoprecipitation assay was performed to examine the interaction between Jun and miR-494 promoter. Dual-luciferase reporter assay and western blotting were performed to identify the direct regulation of SOCS6 by miR-494. An orthotopic xenograft mouse model was conducted to assess tumor growth and invasion. Results: NTSR1 knockdown attenuated the invasion of glioblastoma cells. Jun was positively regulated by NTSR1, which promoted miR-494 expression through binding to miR-494 promoter. SOCS6 was confirmed as a direct target of miR-494, thus, NTSR1-induced miR-494 upregulation resulted in SOCS6 downregulation. Both miR-494 and SOCS6 were involved in the NTSR1-induced invasion of glioblastoma cells. In vivo, tumor invasion and growth were inhibited by NTSR1 knockdown, but were restored with miR-494 overexpression. Conclusion: NTSR1 knockdown inhibited glioblastoma invasion via the Jun/miR-494/SOCS6 axis.


2000 ◽  
Vol 279 (1) ◽  
pp. G223-G237 ◽  
Author(s):  
Shahid Umar ◽  
Joseph H. Sellin ◽  
Andrew P. Morris

Protein kinase (PK) C-ζ is implicated in the control of colonic epithelial cell proliferation in vitro. However, less is known about its physiological role in vivo. Using the transmissible murine colonic hyperplasia (TMCH) model, we determined its expression, subcellular localization, and kinase activity during native crypt hyperproliferation. Enhanced mitosis was associated with increased cellular 72-kDa holoenzyme (PKC-ζ, 3.2-fold), 48-kDa catalytic subunit (PKM-ζ, 3- to 9-fold), and 24-kDa membrane-bound fragment (Mf-ζ, >10-fold) expression. Both PKC-ζ and PKM-ζ exhibited intrinsic kinase activity, and substrate phosphorylation increased 4.5-fold. No change in cellular PKC-ι/PKM-ι expression occurred. The subcellular distribution of immunoreactive PKC-ζ changed significantly: neck cells lost their basal subcellular pole filamentous staining, whereas proliferating cell nuclear antigen-positive cells exhibited elevated cytoplasmic, lateral membrane, and nuclear staining. Subcellular fractionation revealed increased PKC-ζ and PKM-ζ expression and activity within nuclei, which preferentially accumulated PKM-ζ. These results suggest separate cellular and nuclear roles, respectively, for PKC-ζ in quiescent and mitotically active colonocytes. PKM-ζ may specifically act as a modulator of proliferation during TMCH.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Mirim Jin ◽  
Sun Young Park ◽  
Hye Jin Choi ◽  
Younmin Shin ◽  
Eunho Chun ◽  
...  

So-ochim-tang-gamibang (SOCG) is a Korean traditional medicine; it has previously been shown to be safe and effective against depression. Persistently increased levels of circulating glucocorticoids have been considered as a pathological mechanism for depression and associated with decreased neurotrophic factors in the hippocampus. This study investigated whether SOCG controls the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and the molecular mechanisms underlying its effects in vivo and in vitro. Wistar Kyoto (WKY) rats were subjected to restraint stress, where SOCG was orally administered to the animals for 2 weeks. An open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT) were performed to explore the antidepressant activity of SOCG in WKY rats. Plasma levels of HPA axis hormones were measured by ELISA or western blotting analysis. The expression levels or activation of HPA axis-related signaling molecules such as brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), extracellular regulated kinase (ERK), and glucocorticoid receptors (GRs) in the brain were determined by real-time PCR and western blotting analysis. Furthermore, a corticosterone- (CORT-) induced cell injury model was established using SH-SY5Y cells to explore the antidepressive effects of SOCG in vitro. The results of the OFT, FST, and SPT revealed that SOCG ameliorated depressive-like behaviors in the WKY rats. The blood plasma levels of HPA axis hormones such as CORT, CORT-releasing hormone (CRH), and adrenocorticotrophic hormone were downregulated by SOCG. On the other hand, SOCG upregulated the phosphorylation of CREB and ERK in both the rat hippocampus and CORT-treated SH-SY5Y cells. Moreover, it also increased the GR expression. These results suggested that SOCG may improve depression by controlling hyperactive glucocorticoid signaling via the downregulation of HPA axis hormones and upregulation of GR.


2020 ◽  
Vol 21 (11) ◽  
pp. 3756
Author(s):  
Krish Chandrasekaran ◽  
Joungil Choi ◽  
Muhammed Ikbal Arvas ◽  
Mohammad Salimian ◽  
Sujal Singh ◽  
...  

Diabetes predisposes to cognitive decline leading to dementia and is associated with decreased brain NAD+ levels. This has triggered an intense interest in boosting nicotinamide adenine dinucleotide (NAD+) levels to prevent dementia. We tested if the administration of the precursor of NAD+, nicotinamide mononucleotide (NMN), can prevent diabetes-induced memory deficits. Diabetes was induced in Sprague-Dawley rats by the administration of streptozotocin (STZ). After 3 months of diabetes, hippocampal NAD+ levels were decreased (p = 0.011). In vivo localized high-resolution proton magnetic resonance spectroscopy (MRS) of the hippocampus showed an increase in the levels of glucose (p < 0.001), glutamate (p < 0.001), gamma aminobutyric acid (p = 0.018), myo-inositol (p = 0.018), and taurine (p < 0.001) and decreased levels of N-acetyl aspartate (p = 0.002) and glutathione (p < 0.001). There was a significant decrease in hippocampal CA1 neuronal volume (p < 0.001) and neuronal number (p < 0.001) in the Diabetic rats. Diabetic rats showed hippocampal related memory deficits. Intraperitoneal NMN (100 mg/kg) was given after induction and confirmation of diabetes and was provided on alternate days for 3 months. NMN increased brain NAD+ levels, normalized the levels of glutamate, taurine, N-acetyl aspartate (NAA), and glutathione. NMN-treatment prevented the loss of CA1 neurons and rescued the memory deficits despite having no significant effect on hyperglycemic or lipidemic control. In hippocampal protein extracts from Diabetic rats, SIRT1 and PGC-1α protein levels were decreased, and acetylation of proteins increased. NMN treatment prevented the diabetes-induced decrease in both SIRT1 and PGC-1α and promoted deacetylation of proteins. Our results indicate that NMN increased brain NAD+, activated the SIRT1 pathway, preserved mitochondrial oxidative phosphorylation (OXPHOS) function, prevented neuronal loss, and preserved cognition in Diabetic rats.


Sign in / Sign up

Export Citation Format

Share Document