scholarly journals Silver Nanoparticles Protect Skin from Ultraviolet B-Induced Damage in Mice

2020 ◽  
Vol 21 (19) ◽  
pp. 7082
Author(s):  
Yu-Yi Ho ◽  
Der-Shan Sun ◽  
Hsin-Hou Chang

Ultraviolet (UV) radiation from sunlight has various adverse effects; thus, UV blockage is recommended for preventing sunburn. Common sunscreen ingredients, such as nanosized titanium dioxide and zinc oxide, offer effective protection and enhance cosmetic appearance; however, health concerns have been raised regarding their photocatalytic activity, which generates reactive oxygen species under UV illumination. Silver nanoparticles (AgNPs) are known as safe materials for use in a wide spectrum of biomedical applications. In vitro studies have revealed that AgNPs may have a protective effect against UV irradiation, but the effects in animal studies remain unclear. The present study demonstrated that AgNPs effectively protect against UVB-induced skin damage both in cell cultures and mouse models. These results suggested that AgNPs are feasible and safe as sunscreen ingredients for protection against UVB-induced skin damage.

Author(s):  
Burcu Isler ◽  
Patrick Harris ◽  
Adam G Stewart ◽  
David L Paterson

Abstract Cefepime, a wide-spectrum β-lactam antibiotic, has been in use for the treatment of serious bacterial infections for almost 25 years. Since its clinical development, there has been a dramatic shift in its dosing, with 2 g every 8 hours being preferred for serious infections to optimize pharmacokinetic/pharmacodynamic considerations. The advent of ESBLs has become a threat to its ongoing use, although future coadministration with β-lactamase inhibitors (BLIs) under development is an area of intense study. There are currently four new cefepime/BLI combinations in clinical development. Cefepime/zidebactam is generally active against MBL-producing Enterobacterales and Pseudomonas aeruginosa, in vitro and in animal studies, and cefepime/taniborbactam has activity against KPC and OXA-48 producers. Cefepime/enmetazobactam and cefepime/tazobactam are potential carbapenem-sparing agents with activity against ESBLs. Cefepime/enmetazobactam has completed Phase III and cefepime/taniborbactam is in Phase III clinical studies, where they are being tested against carbapenems or piperacillin/tazobactam for the treatment of complicated urinary tract infections. While these combinations are promising, their role in the treatment of MDR Gram-negative infections can only be determined with further clinical studies.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Sabina Fijan ◽  
Anita Frauwallner ◽  
Tomaž Langerholc ◽  
Bojan Krebs ◽  
Jessica A. ter Haar (née Younes) ◽  
...  

The skin and its microbiota serve as physical barriers to prevent invasion of pathogens. Skin damage can be a consequence of illness, surgery, and burns. The most effective wound management strategy is to prevent infections, promote healing, and prevent excess scarring. It is well established that probiotics can aid in skin healing by stimulating the production of immune cells, and they also exhibit antagonistic effects against pathogens via competitive exclusion of pathogens. Our aim was to conduct a review of recent literature on the efficacy of using probiotics against pathogens that cause wound infections. In this integrative review, we searched through the literature published in the international following databases: PubMed, ScienceDirect, Web of Science, and Scopus using the search terms “probiotic” AND “wound infection.” During a comprehensive review and critique of the selected research, fourteen in vitro studies, 8 animal studies, and 19 clinical studies were found. Two of these in vitro studies also included animal studies, yielding a total of 39 articles for inclusion in the review. The most commonly used probiotics for all studies were well-known strains of the species Lactobacillus plantarum, Lactobacillus casei, Lactobacillus acidophilus, and Lactobacillus rhamnosus. All in vitro studies showed successful inhibition of chosen skin or wound pathogens by the selected probiotics. Within the animal studies on mice, rats, and rabbits, probiotics showed strong opportunities for counteracting wound infections. Most clinical studies showed slight or statistically significant lower incidence of surgical site infections, foot ulcer infection, or burn infections for patients using probiotics. Several of these studies also indicated a statistically significant wound healing effect for the probiotic groups. This review indicates that exogenous and oral application of probiotics has shown reduction in wound infections, especially when used as an adjuvant to antibiotic therapy, and therefore the potential use of probiotics in this field remains worthy of further studies, perhaps focused more on typical skin inhabitants as next-generation probiotics with high potential.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 380 ◽  
Author(s):  
Diana Rafael ◽  
Fernanda Andrade ◽  
Francesc Martinez-Trucharte ◽  
Jana Basas ◽  
Joaquín Seras-Franzoso ◽  
...  

Hydrogels (HG) have recognized benefits as drug delivery platforms for biomedical applications. Their high sensitivity to sterilization processes is however one of the greatest challenges regarding their clinical translation. Concerning infection diseases, prevention of post-operatory related infections is crucial to ensure appropriate patient recovery and good clinical outcomes. Silver nanoparticles (AgNPs) have shown good antimicrobial properties but sustained release at the right place is required. Thus, we produced and characterized thermo-sensitive HG based on Pluronic® F127 loaded with AgNPs (HG-AgNPs) and their integrity and functionality after sterilization by dry-heat and autoclave methods were carefully assessed. The quality attributes of HG-AgNPs were seriously affected by dry-heat methods but not by autoclaving methods, which allowed to ensure the required sterility. Also, direct sterilization of the final HG-AgNPs product proved more effective than of the raw material, allowing simpler production procedures in non-sterile conditions. The mechanical properties were assessed in post mortem rat models and the HG-AgNPs were tested for its antimicrobial properties in vitro using extremely drug-resistant (XDR) clinical strains. The produced HG-AgNPs prove to be versatile, easy produced and cost-effective products, with activity against XDR strains and an adequate gelation time and spreadability features and optimal for in situ biomedical applications.


2003 ◽  
Vol 284 (5) ◽  
pp. C1140-C1148 ◽  
Author(s):  
Richard Weller ◽  
Ann Schwentker ◽  
Timothy R. Billiar ◽  
Yoram Vodovotz

Nitric oxide (NO) can either prevent or promote apoptosis, depending on cell type. In the present study, we tested the hypothesis that NO suppresses ultraviolet B radiation (UVB)-induced keratinocyte apoptosis both in vitro and in vivo. Irradiation with UVB or addition of the NO synthase (NOS) inhibitor N G-nitro-l-arginine methyl ester (l-NAME) increased apoptosis in the human keratinocyte cell line CCD 1106 KERTr, and apoptosis was greater when the two agents were given in combination. Addition of the chemical NO donor S-nitroso- N-acetyl-penicillamine (SNAP) immediately after UVB completely abrogated the rise in apoptosis induced by l-NAME. An adenoviral vector expressing human inducible NOS (AdiNOS) also reduced keratinocyte death after UVB. Caspase-3 activity, an indicator of apoptosis, doubled in keratinocytes incubated with l-NAME compared with the inactive isomer, d-NAME, and was reduced by SNAP. Apoptosis was also increased on addition of 1,H-[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. Mice null for endothelial NOS (eNOS) exhibited significantly higher apoptosis than wild-type mice both in the dermis and epidermis, whereas mice null for inducible NOS (iNOS) exhibited more apoptosis than wild-type mice only in the dermis. These results demonstrate an antiapoptotic role for NO in keratinocytes, mediated by cGMP, and indicate an antiapoptotic role for both eNOS and iNOS in skin damage induced by UVB.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jenel Marian Patrascu ◽  
Ioan Avram Nedelcu ◽  
Maria Sonmez ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
...  

This paper presents the synthesis, characterisation, andin vitrotesting of homogenous and heterogeneous materials containing silver nanoparticles (nanoAg). Three types of antiseptic materials based on collagen (COLL), hydroxyapatite (HA), and collagen/hydroxyapatite (COLL/HA) composite materials were obtained. The synthesis of silver nanoparticles was realized by chemical reaction as well as plasma sputtering deposition. The use of chemical reduction allows the synthesis of homogenous materials while the plasma sputtering deposition can be easily used for the synthesis of homogeneous and heterogeneous support. Based on thein vitroassays clear antiseptic activity againstEscherichia coliwas relieved even at low content of nanoAg (10 ppm).


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Di Zhang ◽  
Chengtao Lu ◽  
Zhe Yu ◽  
Xiayin Wang ◽  
Li Yan ◽  
...  

Ultraviolet B (UVB) irradiation has been known to cause skin damage, which is associated with oxidative stress, DNA damage, and apoptosis. Echinacoside is a phenylethanoid glycoside isolated from Herba Cistanches, which exhibits strong antioxidant activity. In this study, we evaluate the photoprotective effect of echinacoside on UVB-induced skin damage and explore the potential molecular mechanism. BALB/c mice and HaCaT cells were treated with echinacoside before UVB exposure. Histopathological examination was used to evaluate the skin damage. Cell viability, lactate dehydrogenase (LDH) levels, antioxidant enzyme activities, reactive oxygen species (ROS) generation, DNA damage, and apoptosis were measured as well. Western blot was used to measure the expression of related proteins. The results revealed that pretreatment of echinacoside ameliorated the skin injury; attenuated oxidative stress, DNA damage, and apoptosis caused by UVB exposure; and normalized the protein levels of ATR, p53, PIAS3, hnRNP K, PARP, and XPA. To summarize, echinacoside is beneficial in the prevention of UVB-induced DNA damage and apoptosis of the skin in vivo and in vitro.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Stefano Sivolella ◽  
Edoardo Stellini ◽  
Giulia Brunello ◽  
Chiara Gardin ◽  
Letizia Ferroni ◽  
...  

Silver (Ag) ions have well-known antimicrobial properties and have been applied as nanostrategies in many medical and surgical fields, including dentistry. The use of silver nanoparticles (Ag NPs) may be an option for reducing bacterial adhesion to dental implant surfaces and preventing biofilm formation, containing the risk of peri-implant infections. Modifying the structure or surface of bone grafts and membranes with Ag NPs may also prevent the risk of contamination and infection that are common when alveolar bone augmentation techniques are used. On the other hand, Ag NPs have revealed some toxic effects on cellsin vitroandin vivoin animal studies. In this setting, the aim of the present paper is to summarize the principle behind Ag NP-based devices and their clinical applications in alveolar bone and dental implant surgery.


2020 ◽  
Vol 6 (4) ◽  
pp. 192
Author(s):  
Yanan Zhao ◽  
David S. Perlin

Rezafungin is a novel echinocandin drug being developed as a first-line option for treatment and prevention of invasive fungal infections. As a result of a structural modification in its parent molecule anidulafungin, rezafungin has acquired unique chemical stability conferring prolonged pharmacokinetics, as well as an administration advantage in the clinical setting compared to other drugs in the same class. Rezafungin displays potent in vitro activity against a wide spectrum of fungal pathogens, which is reflected in robust in vivo efficacy and/or pharmacodynamic studies using various animal models as well as in promising clinical trials data. This review describes in vivo characterization of rezafungin using animal models, current status of clinical development and key findings from these studies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zuzana Vilamová ◽  
Zuzana Konvičková ◽  
Petr Mikeš ◽  
Veronika Holišová ◽  
Pavel Mančík ◽  
...  

Abstract Polymer-metal based material with unique 3D structure is an attractive substrate for the development of biomedical applications. A novel preparation of the composite from polymer fibres and silver nanoparticles has been designed through: (1) preparation of silver nanoparticles by phytosynthesis and (2) incorporation of these nanoparticles in a fibrous membrane prepared by electrospinning. The nanoparticle biosynthesis was performed in a pure environmental-friendly, easy, static, bottom-up in vitro regime using Tilia sp. leachate. TEM and XRD depict the formation, stabilisation and encapsulation of crystalline silver (14 ± 9 nm) nanoparticles (NPs) in one simple step with low tendency to aggregate. We achieved successful incorporation in the uniform electrospun 221 ± 24 nm poly(vinylalcohol) fibres, and this confirms the possibility of its use in the biomedical field. Both SEM with EDX and TEM analysis determined fibre uniformity with the presence of silver NPs, and ICP-AES confirmed the relatively similar metal concentration throughout the triplicate measurement of fibre structures on the 2 × 2 cm area in the following manner: 0.303 ± 0.018 wt. %, 0.282 ± 0.017 wt. %, and 0.281 ± 0.017 wt. %. Our hypothesis is based on previously verified preparation of active silver NPs and the easily prepared PVA electrospun fibres which act as a water soluble matrix. The simple methodology of incorporating biosynthetically prepared NPs in the PVA fibers highlights the effectiveness of this material, with simple release from water-soluble PVA and final activation of the prepared NPs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Susanne M. Henning ◽  
Jieping Yang ◽  
Ru-Po Lee ◽  
Jianjun Huang ◽  
Mark Hsu ◽  
...  

Abstract In vitro and animal studies have demonstrated that topical application and oral consumption of pomegranate reduces UVB-induced skin damage. We therefore investigated if oral pomegranate consumption will reduce photodamage from UVB irradiation and alter the composition of the skin microbiota in a randomized controlled, parallel, three-arm, open label study. Seventy-four female participants (30–45 years) with Fitzpatrick skin type II-IV were randomly assigned (1:1:1) to 1000 mg of pomegranate extract (PomX), 8 oz of pomegranate juice (PomJ) or placebo for 12 weeks. Minimal erythema dose (MED) and melanin index were determined using a cutometer (mexameter probe). Skin microbiota was determined using 16S rRNA sequencing. The MED was significantly increased in the PomX and PomJ group compared to placebo. There was no significant difference on phylum, but on family and genus level bacterial composition of skin samples collected at baseline and after 12 week intervention showed significant differences between PomJ, PomX and placebo. Members of the Methylobacteriaceae family contain pigments absorbing UV irradiation and might contribute to UVB skin protection. However, we were not able to establish a direct correlation between increased MED and bacterial abundance. In summary daily oral pomegranate consumption may lead to enhanced protection from UV photodamage.


Sign in / Sign up

Export Citation Format

Share Document