scholarly journals Cross-Tolerance and Autoimmunity as Missing Links in Abiotic and Biotic Stress Responses in Plants: A Perspective toward Secondary Metabolic Engineering

2021 ◽  
Vol 22 (21) ◽  
pp. 11945
Author(s):  
Lakshmipriya Perincherry ◽  
Łukasz Stępień ◽  
Soniya Eppurathu Vasudevan

Plants employ a diversified array of defense activities when they encounter stress. Continuous activation of defense pathways that were induced by mutation or altered expression of disease resistance genes and mRNA surveillance mechanisms develop abnormal phenotypes. These plants show continuous defense genes’ expression, reduced growth, and also manifest tissue damage by apoptosis. These macroscopic abrasions appear even in the absence of the pathogen and can be attributed to a condition known as autoimmunity. The question is whether it is possible to develop an autoimmune mutant that does not fetch yield and growth penalty and provides enhanced protection against various biotic and abiotic stresses via secondary metabolic pathways’ engineering. This review is a discussion about the common stress-fighting mechanisms, how the concept of cross-tolerance instigates propitious or protective autoimmunity, and how it can be achieved by engineering secondary metabolic pathways.

2021 ◽  
Author(s):  
Magdalena Modrzejewska ◽  
Adam Kawalek ◽  
Aneta A. Bartosik

Pseudomonas aeruginosa, a facultative human pathogen causing nosocomial infections, has complex regulatory systems involving many transcriptional regulators. LTTR (LysR-Type Transcriptional Regulator) family proteins are involved in the regulation of various processes including stress responses, motility, virulence and amino acid metabolism. The aim of this study was to characterize the LysR-type protein BsrA (PA2121), previously described as a negative regulator of biofilm formation in P. aeruginosa. Genome wide identification of BsrA binding sites using ChIP-seq revealed 765 BsrA-bound regions in the P. aeruginosa PAO1161 genome, including 367 sites in intergenic regions. The motif T-N11-A was identified within sequences bound by BsrA. Transcriptomic analysis showed altered expression of 157 genes in response to BsrA excess, of which 35 had a BsrA binding site within their promoter regions, suggesting a direct influence of BsrA on the transcription of these genes. BsrA-repressed loci included genes encoding proteins engaged in key metabolic pathways such as the tricarboxylic acid cycle. The panel of loci possibly directly activated by BsrA, included genes involved in pili/fimbriae assembly as well as secretion and transport systems. In addition, DNA pull-down and regulatory analyses showed the involvement of PA2551, PA3398 and PA5189 in regulation of bsrA expression, indicating that this gene is part of an intricate regulatory network. Taken together, these findings reveal the existence of a BsrA regulon, which performs important functions in P. aeruginosa.


2021 ◽  
Vol 12 ◽  
Author(s):  
Leiyun Yang ◽  
Zhixue Wang ◽  
Jian Hua

Plant intracellular immune receptor NLR (nucleotide-binding leucine-rich repeat) proteins sense the presence of pathogens and trigger strong and robust immune responses. NLR genes are known to be tightly controlled at the protein level, but little is known about their dynamics at the transcript level. In this study, we presented a meta-analysis of transcript dynamics of all 207 NLR genes in the Col-0 accession of Arabidopsis thaliana under various biotic and abiotic stresses based on 88 publicly available RNA sequencing datasets from 27 independent studies. We find that about two thirds of the NLR genes are generally induced by pathogens, immune elicitors, or salicylic acid (SA), suggesting that transcriptional induction of NLR genes might be an important mechanism in plant immunity regulation. By contrast, NLR genes induced by biotic stresses are often repressed by abscisic acid, high temperature and drought, suggesting that transcriptional regulation of NLR genes might be important for interaction between abiotic and biotic stress responses. In addition, pathogen-induced expression of some NLR genes are dependent on SA induction. Interestingly, a small group of NLR genes are repressed under certain biotic stress treatments, suggesting an unconventional function of this group of NLRs. This meta-analysis thus reveals the transcript dynamics of NLR genes under biotic and abiotic stress conditions and suggests a contribution of NLR transcript regulation to plant immunity as well as interactions between abiotic and biotic stress responses.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1047
Author(s):  
Giovanna Di Emidio ◽  
Stefano Falone ◽  
Paolo Giovanni Artini ◽  
Fernanda Amicarelli ◽  
Anna Maria D’Alessandro ◽  
...  

Mitochondria act as hubs of numerous metabolic pathways. Mitochondrial dysfunctions contribute to altering the redox balance and predispose to aging and metabolic alterations. The sirtuin family is composed of seven members and three of them, SIRT3-5, are housed in mitochondria. They catalyze NAD+-dependent deacylation and the ADP-ribosylation of mitochondrial proteins, thereby modulating gene expression and activities of enzymes involved in oxidative metabolism and stress responses. In this context, mitochondrial sirtuins (mtSIRTs) act in synergistic or antagonistic manners to protect from aging and aging-related metabolic abnormalities. In this review, we focus on the role of mtSIRTs in the biological competence of reproductive cells, organs, and embryos. Most studies are focused on SIRT3 in female reproduction, providing evidence that SIRT3 improves the competence of oocytes in humans and animal models. Moreover, SIRT3 protects oocytes, early embryos, and ovaries against stress conditions. The relationship between derangement of SIRT3 signaling and the imbalance of ROS and antioxidant defenses in testes has also been demonstrated. Very little is known about SIRT4 and SIRT5 functions in the reproductive system. The final goal of this work is to understand whether sirtuin-based signaling may be taken into account as potential targets for therapeutic applications in female and male infertility.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 178
Author(s):  
Ana L. Villagómez-Aranda ◽  
Luis F. García-Ortega ◽  
Irineo Torres-Pacheco ◽  
Ramón G. Guevara-González

Epigenetic regulation is a key component of stress responses, acclimatization and adaptation processes in plants. DNA methylation is a stable mark plausible for the inheritance of epigenetic traits, such that it is a potential scheme for plant breeding. However, the effect of modulators of stress responses, as hydrogen peroxide (H2O2), in the methylome status has not been elucidated. A transgenic tobacco model to the CchGLP gene displayed high H2O2 endogen levels correlated with biotic and abiotic stresses resistance. The present study aimed to determine the DNA methylation status changes in the transgenic model to obtain more information about the molecular mechanism involved in resistance phenotypes. The Whole-genome bisulfite sequencing analysis revealed a minimal impact of overall levels and distribution of methylation. A total of 9432 differential methylated sites were identified in distinct genome regions, most of them in CHG context, with a trend to hypomethylation. Of these, 1117 sites corresponded to genes, from which 83 were also differentially expressed in the plants. Several genes were associated with respiration, energy, and calcium signaling. The data obtained highlighted the relevance of the H2O2 in the homeostasis of the system in stress conditions, affecting at methylation level and suggesting an association of the H2O2 in the physiological adaptation to stress functional linkages may be regulated in part by DNA methylation.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4538
Author(s):  
Scarlett Puebla-Barragan ◽  
Emiley Watson ◽  
Charlotte van der Veer ◽  
John A. Chmiel ◽  
Charles Carr ◽  
...  

Lactobacillus crispatus is the dominant species in the vagina of many women. With the potential for strains of this species to be used as a probiotic to help prevent and treat dysbiosis, we investigated isolates from vaginal swabs with Lactobacillus-dominated and a dysbiotic microbiota. A comparative genome analysis led to the identification of metabolic pathways for synthesis and degradation of three major biogenic amines in most strains. However, targeted metabolomic analysis of the production and degradation of biogenic amines showed that certain strains have either the ability to produce or to degrade these compounds. Notably, six strains produced cadaverine, one produced putrescine, and two produced tyramine. These biogenic amines are known to raise vaginal pH, cause malodour, and make the environment more favourable to vaginal pathogens. In vitro experiments confirmed that strains isolated from women with a dysbiotic vaginal microbiota have higher antimicrobial effects against the common urogenital pathogens Escherichia coli and Enterococcus faecium. The results indicate that not all L. crispatus vaginal strains appear suitable for probiotic application and the basis for selection should not be only the overall composition of the vaginal microbiota of the host from which they came, but specific biochemical and genetic traits.


Physiology ◽  
2003 ◽  
Vol 18 (6) ◽  
pp. 215-221 ◽  
Author(s):  
Michal Horowitz

Heat acclimation enhances cardiac efficiency by increasing stroke volume and decreasing heart rate. These adaptations involve biochemical changes in the contractile apparatus, switched on by altered expression of genes coding contractile and calcium-regulatory proteins and partially mediated by persistent low thyroxine. Heat acclimation also produces cross-tolerance to oxygen deprivation, thus reinforcing cardiac adaptation to oxygen demand/supply mismatching via energy-sparing pathways.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel Restrepo-Montoya ◽  
Phillip E. McClean ◽  
Juan M. Osorno

Abstract Background Legume species are an important plant model because of their protein-rich physiology. The adaptability and productivity of legumes are limited by major biotic and abiotic stresses. Responses to these stresses directly involve plasma membrane receptor proteins known as receptor-like kinases and receptor-like proteins. Evaluating the homology relations among RLK and RLP for seven legume species, and exploring their presence among synteny blocks allow an increased understanding of evolutionary relations, physical position, and chromosomal distribution in related species and their shared roles in stress responses. Results Typically, a high proportion of RLK and RLP legume proteins belong to orthologous clusters, which is confirmed in this study, where between 66 to 90% of the RLKs and RLPs per legume species were classified in orthologous clusters. One-third of the evaluated syntenic blocks had shared RLK/RLP genes among both legumes and non-legumes. Among the legumes, between 75 and 98% of the RLK/RLP were present in syntenic blocks. The distribution of chromosomal segments between Phaseolus vulgaris and Vigna unguiculata, two species that diverged ~ 8 mya, were highly similar. Among the RLK/RLP synteny clusters, seven experimentally validated resistance RLK/RLP genes were identified in syntenic blocks. The RLK resistant genes FLS2, BIR2, ERECTA, IOS1, and AtSERK1 from Arabidopsis and SLSERK1 from Solanum lycopersicum were present in different pairwise syntenic blocks among the legume species. Meanwhile, only the LYM1- RLP resistant gene from Arabidopsis shared a syntenic blocks with Glycine max. Conclusions The orthology analysis of the RLK and RLP suggests a dynamic evolution in the legume family, with between 66 to 85% of RLK and 83 to 88% of RLP belonging to orthologous clusters among the species evaluated. In fact, for the 10-species comparison, a lower number of singleton proteins were reported among RLP compared to RLK, suggesting that RLP positions are more physically conserved compared to RLK. The identification of RLK and RLP genes among the synteny blocks in legumes revealed multiple highly conserved syntenic blocks on multiple chromosomes. Additionally, the analysis suggests that P. vulgaris is an appropriate anchor species for comparative genomics among legumes.


Author(s):  
Jane I Khudyakov ◽  
Michael D Treat ◽  
Mikayla C Shanafelt ◽  
Jared S Deyarmin ◽  
Benjamin A Neely ◽  
...  

Many mammals use adaptive heterothermy (e.g. torpor, hibernation) to reduce metabolic demands of maintaining high body temperature (Tb). Torpor is typically characterized by coordinated declines in Tb and metabolic rate (MR) followed by active rewarming. Most hibernators experience periods of euthermy between bouts of torpor during which homeostatic processes are restored. In contrast, the common tenrec, a basoendothermic Afrotherian mammal, hibernates without interbout arousals and displays extreme flexibility in Tb and MR. We investigated the molecular basis of this plasticity in tenrecs by profiling the liver proteome of animals that were active or torpid with high and more stable Tb (~32°C) or lower Tb (~14°C). We identified 768 tenrec liver proteins, of which 50.9% were differentially abundant between torpid and active animals. Protein abundance was significantly more variable in active cold and torpid compared to active warm animals, suggesting poor control of proteome abundance. Our data suggest that torpor in tenrecs may lead to mismatches in protein pools due to poor coordination of anabolic and catabolic processes. We propose that the evolution of endothermy leading to a more realized homeothermy of boreoeutherians likely led to greater coordination of homeostatic processes and reduced mismatches in thermal sensitivities of metabolic pathways.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Aditya Banerjee ◽  
Aryadeep Roychoudhury

WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of theWRKYgenes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.


2021 ◽  
Author(s):  
Helmut Hiller ◽  
Dawn E. Beachy ◽  
Joseph J. Lebowitz ◽  
Stefanie Engler ◽  
Justin R. Mason ◽  
...  

Type 1 diabetes has a multifactorial autoimmune etiology, involving environmental prompts and polygenic predisposition. We hypothesized that pancreata from individuals with and at risk for type 1 diabetes would exhibit dysregulated expression of genes associated with monogenic forms of diabetes caused by non-redundant single-gene mutations. Employing a “monogenetic transcriptomic strategy,” we measured the expression of these genes in human type 1 diabetes, autoantibody positive (autoantibody+), and control pancreas tissues using RTqPCR in accordance with the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Gene and protein expression were visualized <i>in situ</i> using immunofluorescence, RNAScope, and confocal microscopy. Two-dozen monogenic diabetes genes showed altered expression in human pancreata from individuals with type 1 diabetes versus unaffected controls. Six of these genes also saw dysregulation in pancreata from autoantibody+ persons at increased-risk for type 1 diabetes. As a subset of these genes are related to cellular stress responses, we measured integrated stress response (ISR) genes and identified 20 with altered expression in type 1 diabetes pancreata, including three of the four eIF2a-dependent kinases. Equally intriguing, we observed significant repression of the three arms of the ISR in autoantibody+ pancreata. Collectively, these efforts suggest monogenic diabetes and ISR genes are dysregulated early in the type 1 diabetes disease process and likely contribute to the disorder’s pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document